TY - JOUR
T1 - Expression of mRNAs encoding insulin-like growth factor (IGF) ligands, IGF receptors and IGF binding proteins during follicular growth and atresia in the ovine ovary throughout the oestrous cycle
AU - Hastie, Peter M.
AU - Haresign, William
N1 - Hastie, P. M., Haresign, W. (2006). Expression of mRNAs encoding insulin-like growth factor (IGF) ligands, IGF receptors and IGF binding proteins during follicular growth and atresia in the ovine ovary throughout the oestrous cycle. Animal Reproduction Science, 92, (3-4), 284-299.
Sponsorship: Defra (Genetic Improvement of Hill Sheep; MS0205)
PY - 2006/5
Y1 - 2006/5
N2 - The components of the insulin-like growth factor (IGF) system appear to be involved in the regulation of ovarian follicular growth and atresia in sheep. However, previous studies have only investigated a select few components of the system. The aim of the present study was to investigate the expression of mRNA encoding all of the components of the sheep IGF system among follicles of varying size and health status throughout the oestrous cycle using sheep-specific ribonucleotide probes and in situ hybridisation. For all IGF components, gene expression was unaffected by stage of oestrous cycle. IGF-I mRNA expression in all classes of follicle was generally low throughout the oestrous cycle, while IGFBP-1 mRNA expression could not be demonstrated at all. In contrast, there was relatively intense follicular expression of mRNAs encoding all remaining IGF system components. For IGF-II, both IGF receptors and IGFBP-2, -3, -4, -5, and -6, gene expression decreased as follicles increased in diameter (P <0.01). IGF-II, type I IGF-R and IGFBP-2, -3, -4, and -6 mRNA expression significantly decreased as follicles progressed from healthy to atretic status (P <0.01), whereas gene expression for type II IGF-R and IGFBP-5 was greater in atretic follicles (P <0.01). This study demonstrates the spatial patterns of follicular gene expression for all of the IGF system components in cycling sheep for the first time. These results further highlight the potential functional role of IGF-II, in contrast to IGF-I, in the autocrine and/or paracrine regulation of follicle growth in sheep.
AB - The components of the insulin-like growth factor (IGF) system appear to be involved in the regulation of ovarian follicular growth and atresia in sheep. However, previous studies have only investigated a select few components of the system. The aim of the present study was to investigate the expression of mRNA encoding all of the components of the sheep IGF system among follicles of varying size and health status throughout the oestrous cycle using sheep-specific ribonucleotide probes and in situ hybridisation. For all IGF components, gene expression was unaffected by stage of oestrous cycle. IGF-I mRNA expression in all classes of follicle was generally low throughout the oestrous cycle, while IGFBP-1 mRNA expression could not be demonstrated at all. In contrast, there was relatively intense follicular expression of mRNAs encoding all remaining IGF system components. For IGF-II, both IGF receptors and IGFBP-2, -3, -4, -5, and -6, gene expression decreased as follicles increased in diameter (P <0.01). IGF-II, type I IGF-R and IGFBP-2, -3, -4, and -6 mRNA expression significantly decreased as follicles progressed from healthy to atretic status (P <0.01), whereas gene expression for type II IGF-R and IGFBP-5 was greater in atretic follicles (P <0.01). This study demonstrates the spatial patterns of follicular gene expression for all of the IGF system components in cycling sheep for the first time. These results further highlight the potential functional role of IGF-II, in contrast to IGF-I, in the autocrine and/or paracrine regulation of follicle growth in sheep.
U2 - 10.1016/j.anireprosci.2005.05.022
DO - 10.1016/j.anireprosci.2005.05.022
M3 - Article
SN - 1873-2232
VL - 92
SP - 284
EP - 299
JO - Animal Reproduction Science
JF - Animal Reproduction Science
IS - 3-4
ER -