Fine-Scale Structure in Cometary Dust Tails I: Analysis of Striae in Comet C/2006 P1 (McNaught) through Temporal Mapping

Oliver Price, Geraint H. Jones, Jeff Morrill, Mathew Owens, Karl Battams, Huw Morgan, Miloslav Druckmüller, Sebastian Deiries

Research output: Contribution to journalArticlepeer-review

8 Citations (SciVal)
228 Downloads (Pure)


Striated features, or striae, form in cometary dust tails due to an as-yet unconstrained process or processes. For the first time we directly display the formation of striae, at C/2006 P1 McNaught, using data from the SOHO LASCO C3 coronagraph. The nature of this formation suggests both fragmentation and shadowing effects are important in the formation process. Using the SOHO data with STEREO-A and B data from the HI-1 and HI-2 instruments, we display the evolution of these striae for two weeks, with a temporal resolution of two hours or better. This includes a period of morphological change on 2007 January 13-14 that we attribute to Lorentz forces caused by the comet’s dust tail crossing the heliospheric current sheet. The nature of this interaction also implies a mixing of different sized dust along the striae, implying that fragmentation must be continuous or cascading. To enable this analysis, we have developed a new technique – temporal mapping – that displays cometary dust tails directly in the radiation beta (ratio of radiation pressure to gravity) and dust ejection time phase space. This allows for the combination of various data sets and the removal of transient motion and scaling effects
Original languageEnglish
Pages (from-to)540-557
Number of pages18
Early online date12 Sept 2018
Publication statusPublished - 01 Feb 2019


  • comets - dust
  • comets - plasma
  • solar wind
  • Comets
  • Plasma
  • Dust
  • Solar wind


Dive into the research topics of 'Fine-Scale Structure in Cometary Dust Tails I: Analysis of Striae in Comet C/2006 P1 (McNaught) through Temporal Mapping'. Together they form a unique fingerprint.

Cite this