TY - JOUR
T1 - Former dynamic behaviour of a cold-based valley glacier on Svalbard revealed by basal ice and structural glaciology investigations
AU - Lovell, Harold
AU - Fleming, Edward J.
AU - Benn, Douglas I.
AU - Hubbard, Bryn
AU - Lukas, Sven
AU - Naegeli, Kathrin
N1 - H.L. was funded by a UK Natural Environment Research Council (NERC) PhD studentship (NE/I528050/1), the Queen Mary Postgraduate Research Fund, and an Arctic Field Grant from the Research Council of Norway. E.J.F. was funded by a NERC PhD studentship as part of the GAINS (Glacial Activity in Neoproterozoic Svalbard) grant (NE/H004963/1). K.N. was funded by an Arctic Field Grant, the Swiss Society for Speleology, and the travel grant commission of the Swiss Academy of Science. Landsat satellite images were provided by US Geological Survey (USGS) Earth Explorer, and aerial photographs were acquired from Norsk Polarinstitutt. We thank Ian Boomer for isotope analyses, UNIS logistics (particularly Martin Indreiten, Jukka Pekka Ikonen and Monika Votvik) and Philipp Schuppli for fieldwork support, and all members of the UNIS AG-325 Glaciology course who were present when we first visited Tellbreen in 2011. Andy Hodson provided helpful advice on various aspects of the work. The paper also benefited significantly from thorough and constructive reviews by Dave Evans and Richard Waller. We thank the International Glaciological Society for support with the publication of this paper.
Publisher Copyright:
© 2015, International Glaciology Society. All rights reserved.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - Large numbers of small valley glaciers on Svalbard were thicker and more extensive during the Little Ice Age (LIA), demonstrated by prominent ice-cored moraines up to several kilometres beyond present-day margins. The majority of these glaciers have since experienced a long period of strongly negative mass balance during the 20th century and are now largely frozen to their beds, indicating they are likely to have undergone a thermal transition from a polythermal to a cold-based regime. We present evidence for such a switch by reconstructing the former flow dynamics and thermal regime of Tellbreen, a small cold-based valley glacier in central Spitsbergen, based on its basal sequence and glaciological structures. Within the basal sequence, the underlying matrix-supported diamict is interpreted as saturated subglacial traction till which has frozen at the bed, indicating that the thermal switch has resulted in a cessation of subglacial sediment deformation due to freezing of the former deforming layer. This is overlain by debris-poor dispersed facies ice, interpreted to have formed through strain-induced metamorphism of englacial ice. The sequential development of structures includes arcuate fracture traces, interpreted as shear planes formed in a compressive/transpressive stress regime; and fracture traces, interpreted as healed extensional crevasses. The formation of these sediment/ice facies and structures is indicative of dynamic, warm-based flow, most likely during the LIA when the glacier was significantly thicker.
AB - Large numbers of small valley glaciers on Svalbard were thicker and more extensive during the Little Ice Age (LIA), demonstrated by prominent ice-cored moraines up to several kilometres beyond present-day margins. The majority of these glaciers have since experienced a long period of strongly negative mass balance during the 20th century and are now largely frozen to their beds, indicating they are likely to have undergone a thermal transition from a polythermal to a cold-based regime. We present evidence for such a switch by reconstructing the former flow dynamics and thermal regime of Tellbreen, a small cold-based valley glacier in central Spitsbergen, based on its basal sequence and glaciological structures. Within the basal sequence, the underlying matrix-supported diamict is interpreted as saturated subglacial traction till which has frozen at the bed, indicating that the thermal switch has resulted in a cessation of subglacial sediment deformation due to freezing of the former deforming layer. This is overlain by debris-poor dispersed facies ice, interpreted to have formed through strain-induced metamorphism of englacial ice. The sequential development of structures includes arcuate fracture traces, interpreted as shear planes formed in a compressive/transpressive stress regime; and fracture traces, interpreted as healed extensional crevasses. The formation of these sediment/ice facies and structures is indicative of dynamic, warm-based flow, most likely during the LIA when the glacier was significantly thicker.
KW - Arctic glaciology
KW - basal ice
KW - ice dynamics
KW - structural glaciology
KW - subglacial sediments
KW - Basal ice
KW - Structural glaciology
KW - Subglacial sediments
KW - Ice dynamics
UR - http://hdl.handle.net/2160/30594
UR - http://www.scopus.com/inward/record.url?scp=84937881421&partnerID=8YFLogxK
U2 - 10.3189/2015JoG14J120
DO - 10.3189/2015JoG14J120
M3 - Article
SN - 0022-1430
VL - 61
SP - 309
EP - 328
JO - Journal of Glaciology
JF - Journal of Glaciology
IS - 226
ER -