Projects per year
Abstract
Red macroalgae underpin many commercially important food, pharmaceutical and other important industries. To date, research into these species has generally focused on improving seaweed cultivation, developing new methods to extract useful compounds, or identify novel applications. Due to their economic importance, there is a requirement to develop a more complete understanding of the genome and metabolic pathways in these key seaweed species. This review describes progress in genomics, transcriptomics, protoplast isolation, and transformation approaches. It also explores the potential of genome editing using the CRISPR/Cas system to further our understanding of gene function related to different metabolic pathways and resolving unexplored aspects of macroalgal physiology traits linked to crop improvement. The application of functional genomics is essential to gain a complete understanding of both physiological and metabolomic processes, that will ultimately enhance the commercial resilience of macroalgae related industries that are subject to numerous pressures, including climate change. Although the use of genetic manipulation to alter growth characteristics or composition in seaweed will not readily apply to the macroalgae industry in the short term, it is likely to be critical for sustaining future commercial growth. The functional characterisation of macroalgal genes through the CRISPR/ Cas approach promises to open new avenues for translational research on utilising macroalgal resources for the sustainable development of these aquaculture systems.
Original language | English |
---|---|
Article number | 103227 |
Number of pages | 13 |
Journal | Algal Research |
Volume | 74 |
DOIs | |
Publication status | Published - 24 Aug 2023 |
Keywords
- CRISPR/Cas
- Genetic transformation
- Genome editing
- Genomics
- Macroalgae
- Transcriptomics
Fingerprint
Dive into the research topics of 'Functional genomic and transformation resources for commercially important red macroalgae (Rhodophyta)'. Together they form a unique fingerprint.Projects
- 1 Finished
-
BBSRC Core Strategic Programme in Resilient Crops: Grasslands Gogerddan
Armstead, I. (PI), Donnison, I. (CoI), Jones, H. (CoI), Skot, L. (CoI), Fernandez Fuentes, N. (CoI), Phillips, D. (PI), Kingston-Smith, A. (CoI) & Bosch, M. (CoI)
Biotechnology and Biological Sciences Research Council
01 Apr 2017 → 31 Mar 2020
Project: Externally funded research