Genetic and Physiological Responses to Heat Stress in Brassica napus

Mariam Kourani, Fady Mohareb*, Faisal I. Rezwan, Maria Anastasiadi, John P. Hammond

*Corresponding author for this work

Research output: Contribution to journalReview Articlepeer-review

13 Citations (SciVal)
66 Downloads (Pure)


Given the current rise in global temperatures, heat stress has become a major abiotic challenge affecting the growth and development of various crops and reducing their productivity. Brassica napus, the second largest source of vegetable oil worldwide, experiences a drastic reduction in seed yield and quality in response to heat. This review outlines the latest research that explores the genetic and physiological impact of heat stress on different developmental stages of B. napus with a special attention to the reproductive stages of floral progression, organogenesis, and post flowering. Several studies have shown that extreme temperature fluctuations during these crucial periods have detrimental effects on the plant and often leading to impaired growth and reduced seed production. The underlying mechanisms of heat stress adaptations and associated key regulatory genes are discussed. Furthermore, an overview and the implications of the polyploidy nature of B. napus and the regulatory role of alternative splicing in forming a priming-induced heat-stress memory are presented. New insights into the dynamics of epigenetic modifications during heat stress are discussed. Interestingly, while such studies are scarce in B. napus, opposite trends in expression of key genetic and epigenetic components have been identified in different species and in cultivars within the same species under various abiotic stresses, suggesting a complex role of these genes and their regulation in heat stress tolerance mechanisms. Additionally, omics-based studies are discussed with emphasis on the transcriptome, proteome and metabolome of B. napus, to gain a systems level understanding of how heat stress alters its yield and quality traits. The combination of omics approaches has revealed crucial interactions and regulatory networks taking part in the complex machinery of heat stress tolerance. We identify key knowledge gaps regarding the impact of heat stress on B. napus during its yield determining reproductive stages, where in-depth analysis of this subject is still needed. A deeper knowledge of heat stress response components and mechanisms in tissue specific models would serve as a stepping-stone to gaining insights into the regulation of thermotolerance that takes place in this important crop species and support future breeding of heat tolerant crops.

Original languageEnglish
Article number832147
Number of pages20
JournalFrontiers in Plant Science
Publication statusPublished - 05 Apr 2022
Externally publishedYes


  • alternative splicing
  • Brassica napus
  • epigenetic modifications
  • flowering
  • heat stress


Dive into the research topics of 'Genetic and Physiological Responses to Heat Stress in Brassica napus'. Together they form a unique fingerprint.

Cite this