Glacitectonic deformation in the Chuos Formation of northern Namibia: Implications for neoproterozoic ice dynamics

Marie E. Busfield*, Daniel P. Le Heron

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Citations (SciVal)
238 Downloads (Pure)

Abstract

The Chuos Formation is a diamictite-dominated succession of Cryogenian age, variously interpreted as the product of glaciomarine deposition, glacially related mass movement, or rift-related sediment remobilisation in a non-glacial environment. These interpretations have wide ranging implications for the extent of ice cover during the supposedly pan-global Neoproterozoic icehouse. In the Otavi Mountainland, northern Namibia, detailed analysis of soft-sediment deformation structures on the macro- and micro-scale support glacitectonic derivation in response to overriding ice from the south/south-east. Overall, the upward increase in strain intensity, predominance of ductile deformation features (e.g. asymmetric folds, rotational turbates and necking structures, clast boudinage, unistrial plasmic fabrics) and pervasive glacitectonic lamination support subglacial deformation under high and sustained porewater pressures. In contrast, soft-sediment structures indicative of mass movements, including flow noses, tile structures, and basal shear zones, are not present. The close association of subglacial deformation, abundant ice-rafted debris and ice-contact fan deposits indicate subaqueous deposition in an ice-proximal setting, subject to secondary subglacial deformation during oscillation of the ice margin. These structures thus reveal evidence of dynamic grounded ice sheets in the Neoproterozoic, demonstrating their key palaeoclimatic significance within ancient sedimentary successions.

Original languageEnglish
Pages (from-to)778-789
Number of pages12
JournalProceedings of the Geologists' Association
Volume124
Issue number5
DOIs
Publication statusPublished - Sept 2013

Keywords

  • Ductile deformation
  • Glacitectonism
  • Neoproterozoic
  • Otavi Mountainland
  • Snowball Earth

Fingerprint

Dive into the research topics of 'Glacitectonic deformation in the Chuos Formation of northern Namibia: Implications for neoproterozoic ice dynamics'. Together they form a unique fingerprint.

Cite this