Global conditions in the solar corona from 2010 to 2017

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)
144 Downloads (Pure)

Abstract

Through reduction of a huge data set spanning 2010{\textendash}2017, we compare mean global changes in temperature, emission measure (EM), and underlying photospheric magnetic field of the solar corona over most of the last activity cycle. The quiet coronal mean temperature rises from 1.4 to 1.8 MK, whereas EM increases by almost a factor of 50\% from solar minimum to maximum. An increased high-temperature component near 3 MK at solar maximum drives the increase in quiet coronal mean temperature, whereas the bulk of the plasma remains near 1.6 MK throughout the cycle. The mean, spatially smoothed magnitude of the quiet Sun magnetic field rises from 1.6 G in 2011 to peak at 2.0 G in 2015. Active region conditions are highly variable, but their mean remains approximately constant over the cycle, although there is a consistent decrease in active region high-temperature emission (near 3 MK) between the peak of solar maximum and present. Active region mean temperature, EM, and magnetic field magnitude are highly correlated. Correlation between sunspot/active region area and quiet coronal conditions shows the important influence of decaying sunspots in driving global changes, although we find no appreciable delay between changes in active region area and quiet Sun magnetic field strength. The hot coronal contribution to extreme ultraviolet (EUV) irradiance is dominated by the quiet corona throughout most of the cycle, whereas the high variability is driven by active regions. Solar EUV irradiance cannot be predicted accurately by sunspot index alone, highlighting the need for continued measurements.
Original languageEnglish
Article numbere1602056
Pages (from-to)1-13
Number of pages13
JournalScience Advances
Volume3
Issue number7
DOIs
Publication statusPublished - 14 Jul 2017

Fingerprint

Dive into the research topics of 'Global conditions in the solar corona from 2010 to 2017'. Together they form a unique fingerprint.

Cite this