Abstract
In recent years, numerous techniques have been proposed for human activity recognition (HAR) from images and videos. These techniques can be divided into two major categories: handcrafted and deep learning. Deep Learning-based models have produced remarkable results for HAR. However, these models have several shortcomings, such as the requirement for a massive amount of training data, lack of transparency, offline nature, and poor interpretability of their internal parameters. In this paper, a new approach for HAR is proposed, which consists of an interpretable, self-evolving, and self-organizing set of 0-order If...THEN rules. This approach is entirely data-driven, and non-parametric; thus, prototypes are identified automatically during the training process. To demonstrate the effectiveness of the proposed method, a set of high-level features is obtained using a pre-trained deep convolution neural network model, and a recently introduced deep rule-based classifier is applied for classification. Experiments are performed on a challenging benchmark dataset UCF50; results confirmed that the proposed approach outperforms state-of-the-art methods. In addition to this, an ablation study is conducted to demonstrate the efficacy of the proposed approach by comparing the performance of our DRB classifier with four state-of-the-art classifiers. This analysis revealed that the DRB classifier could perform better than state-of-the-art classifiers, even with limited training samples.
Original language | English |
---|---|
Pages (from-to) | 30653–30667 |
Number of pages | 15 |
Journal | Multimedia Tools and Applications |
Volume | 79 |
Issue number | 41-42 |
Early online date | 17 Aug 2020 |
DOIs | |
Publication status | Published - 01 Nov 2020 |
Externally published | Yes |
Keywords
- Deep learning
- Fuzzy rule-based classifier
- Human action recognition