TY - JOUR
T1 - Hybrid Application of Nanoparticles and Polymer in Enhanced Oil Recovery Processes
AU - Hu, Yanqiu
AU - Zhao, Zeyuan
AU - Dong, Huijie
AU - Mikhailova, Maria Vladimirovna
AU - Davarpanah, Afshin
N1 - Funding Information:
Acknowledgments: This work was supported by the young talent innovation project of education department of Heilongjiang province of China (Grants No. UNPYSCT-2018114).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4/27
Y1 - 2021/4/27
N2 - Nowadays, the addition of nanoparticles to polymer solutions would be of interest; however, the feasible property of nanoparticles and their impact on oil recovery has not been investigated in more detail. This study investigates the rheology and capillary forces (interfacial tension and contact angle) of nanoparticles in the polymer performances during oil recovery processes. Thereby, a sequential injection of water, polymer, and nanoparticles; Nanosilica (SiO2) and nano-aluminium oxide (Al2O3) was performed to measure the oil recovery factor. Retention decrease, capillary forces reduction, and polymer viscoelastic behavior increase have caused improved oil recovery due to the feasible mobility ratio of polymer–nanoparticle in fluid loss. The oil recovery factor for polymer flooding, polymer–Al2O3, and polymer–SiO2 is 58%, 63%, and 67%, respectively. Thereby, polymer–SiO2 flooding would provide better oil recovery than other scenarios that reduce the capillary force due to the structural disjoining pressure. According to the relative permeability curves, residual oil saturation (Sor) and water relative permeability (Krw) are 29% and 0.3%, respectively, for polymer solution; however, for the polymer–nanoparticle solution, Sor and Krw are 12% and 0.005%, respectively. Polymer treatment caused a dramatic decrease, rather than the water treatment effect on the contact angle. The minimum contact angle for water and polymer treatment are about 21 and 29, respectively. The contact angle decrease for polymer treatment in the presence of nanoparticles related to the surface hydrophilicity increase. Therefore, after 2000 mg L−1 of SiO2 concentration, there are no significant changes in contact angle.
AB - Nowadays, the addition of nanoparticles to polymer solutions would be of interest; however, the feasible property of nanoparticles and their impact on oil recovery has not been investigated in more detail. This study investigates the rheology and capillary forces (interfacial tension and contact angle) of nanoparticles in the polymer performances during oil recovery processes. Thereby, a sequential injection of water, polymer, and nanoparticles; Nanosilica (SiO2) and nano-aluminium oxide (Al2O3) was performed to measure the oil recovery factor. Retention decrease, capillary forces reduction, and polymer viscoelastic behavior increase have caused improved oil recovery due to the feasible mobility ratio of polymer–nanoparticle in fluid loss. The oil recovery factor for polymer flooding, polymer–Al2O3, and polymer–SiO2 is 58%, 63%, and 67%, respectively. Thereby, polymer–SiO2 flooding would provide better oil recovery than other scenarios that reduce the capillary force due to the structural disjoining pressure. According to the relative permeability curves, residual oil saturation (Sor) and water relative permeability (Krw) are 29% and 0.3%, respectively, for polymer solution; however, for the polymer–nanoparticle solution, Sor and Krw are 12% and 0.005%, respectively. Polymer treatment caused a dramatic decrease, rather than the water treatment effect on the contact angle. The minimum contact angle for water and polymer treatment are about 21 and 29, respectively. The contact angle decrease for polymer treatment in the presence of nanoparticles related to the surface hydrophilicity increase. Therefore, after 2000 mg L−1 of SiO2 concentration, there are no significant changes in contact angle.
KW - Interfacial tension
KW - Nanoparticles
KW - Oil recovery factor
KW - Polymer solution
KW - Relative permeability curves
UR - http://www.scopus.com/inward/record.url?scp=85105490387&partnerID=8YFLogxK
U2 - 10.3390/polym13091414
DO - 10.3390/polym13091414
M3 - Article
C2 - 33925598
AN - SCOPUS:85105490387
SN - 2073-4360
VL - 13
JO - Polymers
JF - Polymers
IS - 9
M1 - 1414
ER -