TY - JOUR
T1 - Hydrocarbon source rock potential in the southwestern Gulf of Suez graben
T2 - Insights from organic geochemistry and palynofacies studies on well samples from the Ras El Bahar Oilfield
AU - Diasty, W. Sh. El
AU - El Beialy, S. Y.
AU - Mostafa, A. R.
AU - El Adl, H. A.
AU - Batten, David
N1 - This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.marpetgeo.2016.11.012
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Palynological and biomarker characteristics of organic facies recovered from Cretaceous–Miocene well samples in the Ras El Bahar Oilfield, southwest Gulf of Suez, and their correlation with lithologies, environments of deposition and thermal maturity have provided a sound basis for determining their source potential for hydrocarbons. In addition to palynofacies analysis, TOC/Rock-Eval pyrolysis, kerogen concentrates, bitumen extraction, carbon isotopes and saturated and aromatic biomarkers enable qualitative and quantitative assessments of sedimentary organic matter to be made. The results obtained from Rock-Eval pyrolysis and molecular biomarker data indicate that most of the samples come from horizons that have fair to good hydrocarbon generation potential in the study area. The Upper Cretaceous–Paleocene-Lower Eocene samples contain mostly Type-II to Type-III organic matter with the capability of generating oil and gas. The sediments concerned accumulated in dysoxic–anoxic marine environments. By contrast, the Miocene rocks yielded mainly Type-III and Type-II/III organic matter with mainly gas-generating potential. These rocks reflect deposition in a marine environment into which there was significant terrigenous input. Three palynofacies types have been recognized. The first (A) consists of Type-III gas-prone kerogen and is typical of the Early–Middle Miocene Belayim, Kareem and upper Rudeis formations. The second (B) has mixed oil and gas features and characterizes the remainder of the Rudeis Formation. The third association (C) is dominated by amorphous organic matter, classified as borderline Type-II oil-prone kerogen, and is typical of the Matulla (Turonian–Santonian) and Wata (Turonian) formations. Rock-Eval Tmax, PI, hopane and sterane biomarkers consistently indicate an immature to early mature stage of thermal maturity for the whole of the studied succession
AB - Palynological and biomarker characteristics of organic facies recovered from Cretaceous–Miocene well samples in the Ras El Bahar Oilfield, southwest Gulf of Suez, and their correlation with lithologies, environments of deposition and thermal maturity have provided a sound basis for determining their source potential for hydrocarbons. In addition to palynofacies analysis, TOC/Rock-Eval pyrolysis, kerogen concentrates, bitumen extraction, carbon isotopes and saturated and aromatic biomarkers enable qualitative and quantitative assessments of sedimentary organic matter to be made. The results obtained from Rock-Eval pyrolysis and molecular biomarker data indicate that most of the samples come from horizons that have fair to good hydrocarbon generation potential in the study area. The Upper Cretaceous–Paleocene-Lower Eocene samples contain mostly Type-II to Type-III organic matter with the capability of generating oil and gas. The sediments concerned accumulated in dysoxic–anoxic marine environments. By contrast, the Miocene rocks yielded mainly Type-III and Type-II/III organic matter with mainly gas-generating potential. These rocks reflect deposition in a marine environment into which there was significant terrigenous input. Three palynofacies types have been recognized. The first (A) consists of Type-III gas-prone kerogen and is typical of the Early–Middle Miocene Belayim, Kareem and upper Rudeis formations. The second (B) has mixed oil and gas features and characterizes the remainder of the Rudeis Formation. The third association (C) is dominated by amorphous organic matter, classified as borderline Type-II oil-prone kerogen, and is typical of the Matulla (Turonian–Santonian) and Wata (Turonian) formations. Rock-Eval Tmax, PI, hopane and sterane biomarkers consistently indicate an immature to early mature stage of thermal maturity for the whole of the studied succession
KW - Palynofacies
KW - roack-eval pyrolysis
KW - biomarkers
KW - Upper Cretaceous-Miocene sediments
KW - Gulf of Suez
UR - http://hdl.handle.net/2160/44157
U2 - 10.1016/j.marpetgeo.2016.11.012
DO - 10.1016/j.marpetgeo.2016.11.012
M3 - Article
SN - 0264-8172
VL - 80
SP - 133
EP - 153
JO - Marine and Petroleum Geology
JF - Marine and Petroleum Geology
ER -