TY - GEN
T1 - Improved link-based cluster ensembles
AU - Iam-On, Natthakan
AU - Boongoen, Tossapon
PY - 2012
Y1 - 2012
N2 - Cluster ensembles have been shown to be better than any standard clustering algorithm at improving accuracy. This meta-learning formalism helps users to overcome the dilemma of selecting an appropriate technique and the parameters for that technique, given a set of data. It has proven effective for many problem domains, especially microarray data analysis. Among different state-of-the-art methods, the link-based approach (LCE) recently introduced by [22], [23] provides a highly accurate clustering. This paper presents the improvement of LCE with a new link-based similarity measure being developed and engaged. Additional information that is already available in a network is included in the similarity assessment. As such, this refinement can increase the quality of the measures, hence the resulting cluster decision. The performance of this improved LCE is evaluated on synthetic and UCI benchmark datasets, in comparison with the original and several well-known cluster ensemble techniques. The findings suggest that the new model can improve the accuracy of LCE and performs better than the others investigated in the empirical study.
AB - Cluster ensembles have been shown to be better than any standard clustering algorithm at improving accuracy. This meta-learning formalism helps users to overcome the dilemma of selecting an appropriate technique and the parameters for that technique, given a set of data. It has proven effective for many problem domains, especially microarray data analysis. Among different state-of-the-art methods, the link-based approach (LCE) recently introduced by [22], [23] provides a highly accurate clustering. This paper presents the improvement of LCE with a new link-based similarity measure being developed and engaged. Additional information that is already available in a network is included in the similarity assessment. As such, this refinement can increase the quality of the measures, hence the resulting cluster decision. The performance of this improved LCE is evaluated on synthetic and UCI benchmark datasets, in comparison with the original and several well-known cluster ensemble techniques. The findings suggest that the new model can improve the accuracy of LCE and performs better than the others investigated in the empirical study.
KW - clustering algorithms
KW - algorithm design and analysis
KW - accuracy
KW - benchmark testing
KW - partitioning algorithms
KW - frequency measurement
KW - gene expression
UR - http://www.scopus.com/inward/record.url?scp=84865100632&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2012.6252757
DO - 10.1109/IJCNN.2012.6252757
M3 - Conference Proceeding (Non-Journal item)
AN - SCOPUS:84865100632
SN - 9781467314886
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2012 International Joint Conference on Neural Networks, IJCNN 2012
T2 - 2012 Annual International Joint Conference on Neural Networks, IJCNN 2012, Part of the 2012 IEEE World Congress on Computational Intelligence, WCCI 2012
Y2 - 10 June 2012 through 15 June 2012
ER -