TY - JOUR
T1 - Investigating the impact of inoculum source on anaerobic digestion of various species of marine macroalgae
AU - Obata, Oluwatosin
AU - Ditchfield, Arlene
AU - Hatton, Angela
AU - Akunna, Joseph
N1 - Funding Information:
This work was funded by the European Social Fund and the Scottish Association of Marine Science , with support from the Scottish Overseas Research Students Award Scheme .
Publisher Copyright:
© 2020
PY - 2020/3
Y1 - 2020/3
N2 - This study investigated the intrinsic biodegradation potential of marine organic sediment for effective biogas production from various species of marine macroalgae and non-marine biomass. Biogas production potential tests were carried out on three species of seaweed harvested from the west coasts of Scotland, Laminaria digitata, Fucus serratus, and Saccharina latissima, and on a non-marine cellulose biomass seeded with uncultivated and unadapted anoxic marine sediments. As a comparison, the same experiments were repeated using the same substrates but seeded with active mesophilic anaerobically digested sewage sludge. For the cultures seeded with anoxic marine sediments, the highest methane yield was observed in both L. digitata and S. latissima cultures while F. serratus and cellulose, cultures performed relatively poorly. For those seeded with digested sludge, all cultures performed relatively well, except F. serratus. These results show that marine sediments can be effective inoculum for seaweeds digestion. Phylogenetic analyses of the methanogenic community in both sources of inoculum showed that the methanogen community within the sediment and sludge seeded cultures were different. Each culture was dominated by methanogenic populations suitable for the utilisation of the specific biomass derivatives and environmental conditions. For instance, members of the genus Methanosaeta which, dominated sludge seeded cultures were not detected in the sediment seeded cultures. A similar occurrence was observed for the genus Methanofollis which was only detected in the sediment seeded cultures. Hence, in areas where seaweed forms part of a co-digestion with non-marine biomass, start-up using a mixture of anoxic marine sediments and digested wastewater sludge has the potential to provide greater process stability and robustness than using either as sole inoculum.
AB - This study investigated the intrinsic biodegradation potential of marine organic sediment for effective biogas production from various species of marine macroalgae and non-marine biomass. Biogas production potential tests were carried out on three species of seaweed harvested from the west coasts of Scotland, Laminaria digitata, Fucus serratus, and Saccharina latissima, and on a non-marine cellulose biomass seeded with uncultivated and unadapted anoxic marine sediments. As a comparison, the same experiments were repeated using the same substrates but seeded with active mesophilic anaerobically digested sewage sludge. For the cultures seeded with anoxic marine sediments, the highest methane yield was observed in both L. digitata and S. latissima cultures while F. serratus and cellulose, cultures performed relatively poorly. For those seeded with digested sludge, all cultures performed relatively well, except F. serratus. These results show that marine sediments can be effective inoculum for seaweeds digestion. Phylogenetic analyses of the methanogenic community in both sources of inoculum showed that the methanogen community within the sediment and sludge seeded cultures were different. Each culture was dominated by methanogenic populations suitable for the utilisation of the specific biomass derivatives and environmental conditions. For instance, members of the genus Methanosaeta which, dominated sludge seeded cultures were not detected in the sediment seeded cultures. A similar occurrence was observed for the genus Methanofollis which was only detected in the sediment seeded cultures. Hence, in areas where seaweed forms part of a co-digestion with non-marine biomass, start-up using a mixture of anoxic marine sediments and digested wastewater sludge has the potential to provide greater process stability and robustness than using either as sole inoculum.
KW - Anaerobically digested sewage sludge inoculum
KW - Marine macroalgae species
KW - Marine sediments inoculum
KW - Methanogenic microbial community
KW - Seaweeds
UR - http://www.scopus.com/inward/record.url?scp=85077757223&partnerID=8YFLogxK
U2 - 10.1016/j.algal.2020.101803
DO - 10.1016/j.algal.2020.101803
M3 - Article
AN - SCOPUS:85077757223
SN - 2211-9264
VL - 46
JO - Algal Research
JF - Algal Research
M1 - 101803
ER -