Projects per year
Abstract
We investigate the problem of what evolutions an open quantum system described by a time-local master equation can undergo with universal coherent controls. A series of conditions is given which exclude channels from being reachable by any unitary controls, assuming that the coupling to the environment is not being modified. These conditions primarily arise by defining decay rates for the generator of the dynamics of the open system, and then showing that controlling the system can only make these rates more isotropic. This forms a series of constraints on the shape and nonunitality of allowed evolutions, as well as an expression for the time required to reach a given goal. We give numerical examples of the usefulness of these criteria and explore some similarities they have with quantum thermodynamics.
Original language | English |
---|---|
Article number | 012119 |
Journal | Physical Review A |
Volume | 94 |
Issue number | 1 |
DOIs | |
Publication status | Published - 27 Jul 2016 |
Fingerprint
Dive into the research topics of 'Isotropy and control of dissipative quantum dynamics'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Control characterisation of noisy quantum devices
Burgarth, D. (PI)
Engineering and Physical Sciences Research Council
01 Jun 2015 → 30 Sept 2016
Project: Externally funded research