Large-scale lobate scarps in the southern hemisphere of Mercury

T. R. Watters*, A. C. Cook, M. S. Robinson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Citations (SciVal)

Abstract

Utilizing Mariner 10 images of Mercury, we derived a digital elevation model to examine the topography of the large-scale lobate scarps Adventure Rupes, Resolution Rupes, and Discovery Rupes. The thrust faults that formed these landforms occur along a rough arc that extends for over 1000 km. The new topography shows that vertical uplift occurred on the same side of the three structures suggesting that the fault-planes all dip to the concave side of the arc. These data also show that Adventure and Resolution Rupes are topographically continuous, suggesting the two features were formed by a single thrust fault on Mercury. If this is the case, the Adventure-Resolution Rupes thrust fault is comparable in scale to the Discovery Rupes thrust fault. It is generally believed that Mercurian lobate scarps were formed by compressional stresses induced in the crust as the planet's interior cooled and shrank. Global contraction models predict that stresses at the planetary surface are horizontally isotropic (horizontal principal stresses being equal) resulting in randomly distributed thrust faults with no perferred orientations. The location, orientation, and geometry of the Discovery and Adventure-Resolution Rupes thrust faults, may not be randomly distributed. Analysis of the inferred stresses that formed these faults suggests that they were influenced by regional stresses or by mechanical discontinuities in the crust possibly caused by buried impact basins. The new topographic data reveal a broad, roughly circular topographic low interpreted to be an ancient impact basin centered near Schubert crater (43°S, 54°W), not far from an inferred stress center (48°S, 58°W). Thus the Discovery and Adventure-Resolution Rupes thrust faults may have been influenced by mechanical discontinuities in the Mercurian crust introduced by ancient buried impact basins.

Original languageEnglish
Pages (from-to)1523-1530
Number of pages8
JournalPlanetary and Space Science
Volume49
Issue number14-15
DOIs
Publication statusPublished - Dec 2001

Fingerprint

Dive into the research topics of 'Large-scale lobate scarps in the southern hemisphere of Mercury'. Together they form a unique fingerprint.

Cite this