Projects per year
Abstract
We describe seasonal changes in the biogeochemistry, microbial community and ecosystem production of two glacial snowpacks in the maritime Antarctic during a cold summer. Frequent snowfall and low, intermittent melt on the glaciers suppressed surface photosynthesis and promoted net heterotrophy. Concentrations of autotrophic cells (algae and cyanobacteria) were therefore low (average: 150–500 cells mL−1), and short-term estimates of primary production were almost negligible in early summer (<0.1 μg C L−1 d−1). However, order of magnitude increases in Chlorophyll a concentrations occurred later, especially within the mid-snowpack and ice layers below. Short-term primary production increased to ca. 1 μg C L−1 d−1 in mid-summer, and reached 53.1 μg C L−1 d−1 in a mid-snow layer close to an active penguin colony. However, there were significantly more bacteria than autotrophs in the snow (typically 103 cells mL−1, but >104 cells mL−1 in basal ice near the penguin colony). The ratio of bacteria to autotrophs also increased throughout the summer, and short-term bacterial production rates (0.2–2000 μg C L−1 d−1) usually exceeded primary production, especially in basal ice (10–1400 μg C L−1 d−1). The basal ice represented the least diverse but most productive habitat, and a striking feature was its low pH (down to 3.3). Furthermore, all of the overlying snow cover became increasingly acidic as the summer season progressed, which is attributed to enhanced emissions from wet guano in the penguin colony. The study demonstrates that active microbial communities can be expected, even when snowmelt is intermittent in the Antarctic summer.
Original language | English |
---|---|
Article number | e2020JG005706 |
Number of pages | 18 |
Journal | Journal of Geophysical Research: Biogeosciences |
Volume | 126 |
Issue number | 7 |
DOIs | |
Publication status | Published - 15 Jul 2021 |
Keywords
- Antarctica
- Asteroids
- BIOGEOSCIENCES
- Biogeochemical cycles, processes, and modeling
- Biogeochemical kinetics and reaction modeling
- Biogeochemistry
- CRYOSPHERE
- Comets
- Comets: dust tails and trails
- Cryobiology
- Cryospheric change
- GLOBAL CHANGE
- Glaciology
- HYDROLOGY
- Ice
- NATURAL HAZARDS
- Natural hazards
- OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL
- Other
- PALEOCEANOGRAPHY
- PLANETARY SCIENCES: COMETS AND SMALL BODIES
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS
- Permafrost
- Permafrost, cryosphere, and high‐latitude processes
- Research Article
- Snow
- Snow and ice
- Snow biogeochemistry
- Snow ecology
Fingerprint
Dive into the research topics of 'Marked Seasonal Changes in the Microbial Production, Community Composition, and Biogeochemistry of Glacial Snowpack Ecosystems in the Maritime Antarctic'. Together they form a unique fingerprint.Projects
- 2 Finished
-
How will glacial meltwater microbes come in from the cold in this 'Peak Melt' century - DGES
Irvine-Fynn, T. (PI), Mitchell, A. (CoI), Cook, J. (Researcher) & Edwards Rassner, S. M. (Researcher)
Natural Environment Research Council
01 Dec 2018 → 31 May 2022
Project: Externally funded research
-
How will glacial meltwater microbes come in from the cold in this 'Peak Melt' century - IBERS
Edwards, A. (PI), Morphew, R. (CoI) & Mur, L. (CoI)
Natural Environment Research Council
01 Dec 2018 → 31 May 2022
Project: Externally funded research