Mars surface context cameras past, present and future

Matthew Gunn, Claire Cousins

Research output: Contribution to journalArticlepeer-review

15 Citations (SciVal)
154 Downloads (Pure)


Mars has been the focus of robotic space exploration since the 1960s, in which time there have been over 40 missions, some successful, some not. Camera systems have been a core component of all instrument payloads sent to the Martian surface, harnessing some combination of monochrome, color, multispectral, and stereo imagery. Together, these datasets provide the geological context to a mission, which over the decades has included the characterization and spatial mapping of geological units and associated stratigraphy, charting active surface processes such as dust devils and water ice sublimation, and imaging the robotic manipulation of samples via scoops (Viking), drills (Mars Science Laboratory (MSL) Curiosity), and grinders (Mars Exploration Rovers). Through the decades, science context imaging has remained an integral part of increasingly advanced analytical payloads, with continual advances in spatial and spectral resolution, radiometric and geometric calibration, and image analysis techniques. Mars context camera design has encompassed major technological shifts, from single photomultiplier tube detectors to megapixel charged-couple-devices, and from multichannel to Bayer filter color imaging. Here we review the technological capability and evolution of science context imaging instrumentation resulting from successful surface missions to Mars, and those currently in development for planned future missions.
Original languageEnglish
Pages (from-to)144-162
Number of pages19
JournalEarth and Space Science
Issue number4
Early online date27 Apr 2016
Publication statusPublished - 13 May 2016


  • Mars
  • cameras
  • instrumentation
  • exploration


Dive into the research topics of 'Mars surface context cameras past, present and future'. Together they form a unique fingerprint.

Cite this