TY - CHAP
T1 - Matching Feed Characteristics to Animal Requirements Through Plant Breeding
AU - Skot, Leif
AU - Marley, Christina
AU - Lloyd, David
AU - Kingston-Smith, Alison
AU - Humphreys, Mike
PY - 2023/4/20
Y1 - 2023/4/20
N2 - There is an urgent need to reduce the environmental impact of livestock farming, and in this review, we focus on how forage, grain and protein crops through plant breeding can make a contribution to this. Systematic forage plant breeding is only 100 years old, and the genetic variation present in most forage crops is only just starting to be fully utilized. Perennial ryegrass is an example of how plant breeding has led to the development of varieties with increased digestibility and yield. However, new breeding targets will have to be identified, as we increase our understanding of the interactions between plants and the animals that consume them. Forage crops of the future must be able to utilize water and nutrients more efficiently to maximize production per given land area. Forage legumes fix their own nitrogen for the benefit of their own growth. As they are most often grown in mixtures with grasses, this also benefits the companion species. Indeed, multi-species swards can produce higher quantities of forage dry matter (DM) from lower N inputs and improve the productivity of grazing ruminants. Legumes also provide other ecosystem services, including improved soil structure and habitat for insect pollinators. Forage and grain legumes can also provide a source of homegrown protein for non-ruminant livestock animals. EU currently imports over 75% of its use of protein crops for its animal feeds. Increasing Europe’s protein self-sufficiency requires an increase in the use of grain legumes, such as pea, soybean and faba beans. They, in turn, need to be better adapted to new climes, biotic stresses, as well as increased yield and protein content and composition. Basic breeding methods for outbreeding and inbreeding crops are outlined, and current breeding targets are discussed in relation to animal nutrition and their contribution to reducing the environmental impact of livestock farming.
AB - There is an urgent need to reduce the environmental impact of livestock farming, and in this review, we focus on how forage, grain and protein crops through plant breeding can make a contribution to this. Systematic forage plant breeding is only 100 years old, and the genetic variation present in most forage crops is only just starting to be fully utilized. Perennial ryegrass is an example of how plant breeding has led to the development of varieties with increased digestibility and yield. However, new breeding targets will have to be identified, as we increase our understanding of the interactions between plants and the animals that consume them. Forage crops of the future must be able to utilize water and nutrients more efficiently to maximize production per given land area. Forage legumes fix their own nitrogen for the benefit of their own growth. As they are most often grown in mixtures with grasses, this also benefits the companion species. Indeed, multi-species swards can produce higher quantities of forage dry matter (DM) from lower N inputs and improve the productivity of grazing ruminants. Legumes also provide other ecosystem services, including improved soil structure and habitat for insect pollinators. Forage and grain legumes can also provide a source of homegrown protein for non-ruminant livestock animals. EU currently imports over 75% of its use of protein crops for its animal feeds. Increasing Europe’s protein self-sufficiency requires an increase in the use of grain legumes, such as pea, soybean and faba beans. They, in turn, need to be better adapted to new climes, biotic stresses, as well as increased yield and protein content and composition. Basic breeding methods for outbreeding and inbreeding crops are outlined, and current breeding targets are discussed in relation to animal nutrition and their contribution to reducing the environmental impact of livestock farming.
U2 - 10.1007/978-3-031-22584-0_2
DO - 10.1007/978-3-031-22584-0_2
M3 - Chapter
SN - 978-3-031-22583-3
T3 - Smart Animal Production
SP - 17
EP - 53
BT - Smart Livestock Nutrition
A2 - Kyriazakis, Ilias
PB - Springer Nature
ER -