TY - JOUR
T1 - Modelling braided river morphodynamics using a particle travel length framework
AU - Kasprak, Alan
AU - Brasington, James
AU - Hafen, Konrad
AU - Williams, Richard D.
AU - Wheaton, Joseph M.
N1 - Funding Information:
Acknowledgements. This research was supported by a grant from the National Science Foundation (no. 1147942). We thank Philip Bailey (North Arrow Research) for extensive assistance with model code and algorithm development. Field work on the Feshie was completed with the generous permission of Thomas MacDowell and the Glenfeshie Estate, with the assistance of Niall Lehane (Queen Mary University of London), Mark Smith (University of Leeds), Julian Leyland (Southampton University), and Damiá Vericat (Forest Technology Institute of Catalonia). Rees River field data were acquired during the Natural Environment Research Council project (NE/G005427/1). Our modelling efforts benefited from substantial discussion with Sara Bangen, Nate Hough-Snee, Wally MacFarlane, Eric Wall, and Peter Wilcock (Utah State University), along with Rebecca Hodge (Durham University) and David Sear (Southampton University). The comments of Murray Hicks and two anonymous reviewers greatly improved the quality of this manuscript, and we thank them for their contribution.
Publisher Copyright:
© 2019 Author(s).
PY - 2019/3/14
Y1 - 2019/3/14
N2 - Numerical models that predict channel evolution are an essential tool for investigating processes that occur over timescales which render field observation intractable. The current generation of morphodynamic models, however, either oversimplify the relevant physical processes or, in the case of more physically complete codes based on computational fluid dynamics (CFD), have computational overheads that severely restrict the space–time scope of their application. Here we present a new, open-source, hybrid approach that seeks to reconcile these modelling philosophies. This framework combines steady-state, two-dimensional CFD hydraulics with a rule-based sediment transport algorithm to predict particle mobility and transport paths which are used to route sediment and evolve the bed topography. Data from two contrasting natural braided rivers (Rees, New Zealand, and Feshie, United Kingdom) were used for model verification, incorporating reach-scale quantitative morphological change budgets and volumetric assessment of different braiding mechanisms. The model was able to simulate 8 of the 10 empirically observed braiding mechanisms from the parameterized bed erosion, sediment transport, and deposition. Representation of bank erosion and bar edge trimming necessitated the inclusion of a lateral channel migration algorithm. Comparisons between simulations based on steady effective discharge versus event hydrographs discretized into a series of model runs were found to only marginally increase the predicted volumetric change, with greater deposition offsetting erosion. A decadal-scale simulation indicates that accurate prediction of event-scale scour depth and subsequent deposition present a methodological challenge because the predicted pattern of deposition may never “catch up” to erosion if a simple path-length distribution is employed, thus resulting in channel over-scouring. It may thus be necessary to augment path-length distributions to preferentially deposit material in certain geomorphic units. We anticipate that the model presented here will be used as a modular framework to explore the effect of different process representations, and as a learning tool designed to reveal the relative importance of geomorphic transport processes in rivers at multiple timescales.
AB - Numerical models that predict channel evolution are an essential tool for investigating processes that occur over timescales which render field observation intractable. The current generation of morphodynamic models, however, either oversimplify the relevant physical processes or, in the case of more physically complete codes based on computational fluid dynamics (CFD), have computational overheads that severely restrict the space–time scope of their application. Here we present a new, open-source, hybrid approach that seeks to reconcile these modelling philosophies. This framework combines steady-state, two-dimensional CFD hydraulics with a rule-based sediment transport algorithm to predict particle mobility and transport paths which are used to route sediment and evolve the bed topography. Data from two contrasting natural braided rivers (Rees, New Zealand, and Feshie, United Kingdom) were used for model verification, incorporating reach-scale quantitative morphological change budgets and volumetric assessment of different braiding mechanisms. The model was able to simulate 8 of the 10 empirically observed braiding mechanisms from the parameterized bed erosion, sediment transport, and deposition. Representation of bank erosion and bar edge trimming necessitated the inclusion of a lateral channel migration algorithm. Comparisons between simulations based on steady effective discharge versus event hydrographs discretized into a series of model runs were found to only marginally increase the predicted volumetric change, with greater deposition offsetting erosion. A decadal-scale simulation indicates that accurate prediction of event-scale scour depth and subsequent deposition present a methodological challenge because the predicted pattern of deposition may never “catch up” to erosion if a simple path-length distribution is employed, thus resulting in channel over-scouring. It may thus be necessary to augment path-length distributions to preferentially deposit material in certain geomorphic units. We anticipate that the model presented here will be used as a modular framework to explore the effect of different process representations, and as a learning tool designed to reveal the relative importance of geomorphic transport processes in rivers at multiple timescales.
UR - http://www.scopus.com/inward/record.url?scp=85062938016&partnerID=8YFLogxK
U2 - 10.5194/esurf-7-247-2019
DO - 10.5194/esurf-7-247-2019
M3 - Article
SN - 2196-6311
VL - 7
SP - 247
EP - 274
JO - Earth Surface Dynamics
JF - Earth Surface Dynamics
IS - 1
ER -