Morphology, flow dynamics and evolution of englacial conduits in cold ice

Jayne Elizabeth Kamintzis, Tristram Irvine-Fynn, Tom Holt, J P P Jones, Philip R. Porter, Stephen James Arthur Jennings, Kathrin Naegeli, Bryn Hubbard

Research output: Contribution to journalArticlepeer-review

66 Downloads (Pure)


Meltwater routing through ice masses exerts a fundamental control over glacier dynamics and mass balance, and proglacial hydrology. However, despite recent advances in mapping drainage systems in cold, Arctic glaciers, direct observations of englacial channels and their flow conditions remain sparse. Here, using Terrestrial Laser Scanning (TLS) surveys of the main englacial channel of cold-based Austre Brøggerbreen (Svalbard), we map and compare an entrance moulin reach (122 m long) and exit portal reach (273 m long). Analysis of channel planforms, longitudinal profiles, cross-sections and morphological features reveals evidence of spatial variations in water flow conditions and channel incision mechanisms, and the presence of vadose, epiphreatic and phreatic conditions. The entrance reach, located at the base of a perennial moulin, was characterised by vadose, uniform, channel lowering at annual timescales, evidenced by longitudinal grooves, whereas the exit portal reach showed both epiphreatic and vadose conditions, along with upstream knickpoint migration at intra-annual timescales. Fine-scale features, including grooves and scallops, were readily quantified from the TLS point cloud, highlighting the capacity of the technique to inform palaeoflow conditions, and reveal how pulses of meltwater from rainfall events may adjust englacial conduit behaviour. With forecasts of increasing Arctic precipitation in the coming decades, and a progressively greater proportion of glaciers comprising cold ice, augmenting the current knowledge of englacial channel morphology is essential to constrain future glacier hydrological system change.

Original languageEnglish
Pages (from-to)415-432
Number of pages18
JournalEarth Surface Processes and Landforms
Issue number2
Early online date29 Dec 2022
Publication statusPublished - 07 Feb 2023


  • Arctic
  • Austre Brøggerbreen
  • englacial drainage
  • morphology
  • Terrestrial Laser Scanning
  • terrestrial laser scanning


Dive into the research topics of 'Morphology, flow dynamics and evolution of englacial conduits in cold ice'. Together they form a unique fingerprint.

Cite this