TY - JOUR
T1 - Multiscale and multispectral characterization of mineralogy with the ExoMars 2020 rover remote sensing payload
AU - Allender, E.j.
AU - Cousins, C.r.
AU - Gunn, M.d.
AU - Caudill, C.m.
N1 - Funding Information:
This work was supported by the UK Space Agency (ST/P001297/1 and ST/P001394/1). Cousins also acknowledges the Royal Society of Edinburgh for funding. ExoMars analog suite data are available online ( http://exomars.wales ). The authors would like to thank Mark Fox‐Powell, Arola Moreras Marti, and Aubrey Zerkle for field assistance in Iceland; and Robert Barnes, Matthew Balme, Joel Davis, Peter Fawdon, and Melissa Mirino for their assistance in Utah. Thanks also to reviewers Dr. Melissa Rice and Dr. William Farrand for their comments, which greatly improved this manuscript.
Publisher Copyright:
©2020. The Authors.
PY - 2020/4/22
Y1 - 2020/4/22
N2 - In 2020, the European Space Agency and Roscosmos will launch the ExoMars rover, with the scientific objective to detect evidence of life within the Martian surface via the deployment of a 2 m drill. The ExoMars Pasteur payload contains several imaging and spectroscopic instruments key to this objective: the Panoramic Camera (PanCam), Infrared Spectrometer for ExoMars (ISEM), and Close-UP Imager (CLUPI). These instruments are able to collect data at a variety of spatial (sub-mm to decimeter) and spectral (3.3 to 120 nm) resolutions across the 440 to 3,300 nm wavelength range and collectively will form a picture of the geological and morphological characteristics of the surface terrain surrounding the rover. We deployed emulators of this instrument suite at terrestrial analog sites that formed in a range of aqueous environments to test their ability to detect and characterize science targets. We find that the emulator suite is able to effectively detect, characterize, and refine the compositions of multiple targets at working distances spanning from 2 to 18 m. We report on (a) the detection of hydrothermal alteration minerals including Fe-smectites and gypsum from basaltic substrates, (b) the detection of late-stage diagenetic gypsum veins embedded in exposures of sedimentary mudstone, (c) multispectral evidence of compositional differences detected from fossiliferous mudstones, and (d) approaches to cross-referencing multi-scale and multi-resolution data. These findings aid in the development of data products and analysis toolkits in advance of the ExoMars rover mission.
AB - In 2020, the European Space Agency and Roscosmos will launch the ExoMars rover, with the scientific objective to detect evidence of life within the Martian surface via the deployment of a 2 m drill. The ExoMars Pasteur payload contains several imaging and spectroscopic instruments key to this objective: the Panoramic Camera (PanCam), Infrared Spectrometer for ExoMars (ISEM), and Close-UP Imager (CLUPI). These instruments are able to collect data at a variety of spatial (sub-mm to decimeter) and spectral (3.3 to 120 nm) resolutions across the 440 to 3,300 nm wavelength range and collectively will form a picture of the geological and morphological characteristics of the surface terrain surrounding the rover. We deployed emulators of this instrument suite at terrestrial analog sites that formed in a range of aqueous environments to test their ability to detect and characterize science targets. We find that the emulator suite is able to effectively detect, characterize, and refine the compositions of multiple targets at working distances spanning from 2 to 18 m. We report on (a) the detection of hydrothermal alteration minerals including Fe-smectites and gypsum from basaltic substrates, (b) the detection of late-stage diagenetic gypsum veins embedded in exposures of sedimentary mudstone, (c) multispectral evidence of compositional differences detected from fossiliferous mudstones, and (d) approaches to cross-referencing multi-scale and multi-resolution data. These findings aid in the development of data products and analysis toolkits in advance of the ExoMars rover mission.
KW - ExoMars
KW - Mars
KW - XRD
KW - mineralogy
KW - remote sensing
KW - spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85083791938&partnerID=8YFLogxK
U2 - 10.1029/2019EA000692
DO - 10.1029/2019EA000692
M3 - Article
SN - 2333-5084
VL - 7
JO - Earth and Space Science
JF - Earth and Space Science
IS - 4
M1 - e2019EA000692
ER -