TY - JOUR
T1 - National scale mapping of larch plantations for Wales using the Sentinel-2 data archive
AU - Punalekar, Suvarna M.
AU - Planque, Carole
AU - Lucas, Richard M.
AU - Evans, Dai
AU - Correia, Vera
AU - Owers, Christopher J.
AU - Poslajko, Patryk
AU - Bunting, Pete
AU - Chognard, Sebastien
N1 - Funding Information:
This research was funded by the European Research Development Fund (ERDF) Sêr Cymru II program award (80761-AU-108; Living Wales).
Publisher Copyright:
© 2021 The Authors
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Accurate spatial information regarding forest types and tree species is immensely important for efficient forest management strategies. In the UK and particularly in Wales, creating a spatial inventory of larch (Larix sps.) plantations that encompasses both the public and private forests has become one of the highest priorities of woodland management policies, particularly given the need to respond to the rapid spread of Phytophthora ramorum fungal disease. For directing disease control measures, national scale, regularly updated mapping of larch distributions is essential. In this study, we applied a ExtraTree classifier machine learning algorithm to multi-year (June 2015 and December 2019) multi-path composites of vegetation indices derived from 10 m Sentinel-2 satellite data (spectral range used in this study: 490–2190 nm) to map the extent of larch plantations across Wales. For areas identified as woody vegetation, areas under larch plantations were associated with a needle-leaved leaf type and deciduous phenology, allowing differentiation from broad-leaved deciduous and needle-leaved evergreen types. The model accuracies for validation, which included overall accuracy, producer's and user's accuracies, exceeded 95% and the F1-score was greater than 0.97 for all forest types. Comparison against an independent reference dataset indicated all map accuracies above 90% (F1-score higher than 0.92) with the lowest value being 90.3% for the producer's accuracy for larch. Short wave infrared and red-edge based indices were particularly useful for discriminating larch from other forest types. Capacity for updating information on clear-felling of larch stands through annual updates of a woody mask was also introduced. The resulting maps of larch plantations for Wales are the most current for Wales covering public as well as private woodlands and can be routinely updated. The classification approach has potential to be transferred to a wider geographical area given the availability of open-source multi-year Sentienl-2 datasets and robust calibration datasets.
AB - Accurate spatial information regarding forest types and tree species is immensely important for efficient forest management strategies. In the UK and particularly in Wales, creating a spatial inventory of larch (Larix sps.) plantations that encompasses both the public and private forests has become one of the highest priorities of woodland management policies, particularly given the need to respond to the rapid spread of Phytophthora ramorum fungal disease. For directing disease control measures, national scale, regularly updated mapping of larch distributions is essential. In this study, we applied a ExtraTree classifier machine learning algorithm to multi-year (June 2015 and December 2019) multi-path composites of vegetation indices derived from 10 m Sentinel-2 satellite data (spectral range used in this study: 490–2190 nm) to map the extent of larch plantations across Wales. For areas identified as woody vegetation, areas under larch plantations were associated with a needle-leaved leaf type and deciduous phenology, allowing differentiation from broad-leaved deciduous and needle-leaved evergreen types. The model accuracies for validation, which included overall accuracy, producer's and user's accuracies, exceeded 95% and the F1-score was greater than 0.97 for all forest types. Comparison against an independent reference dataset indicated all map accuracies above 90% (F1-score higher than 0.92) with the lowest value being 90.3% for the producer's accuracy for larch. Short wave infrared and red-edge based indices were particularly useful for discriminating larch from other forest types. Capacity for updating information on clear-felling of larch stands through annual updates of a woody mask was also introduced. The resulting maps of larch plantations for Wales are the most current for Wales covering public as well as private woodlands and can be routinely updated. The classification approach has potential to be transferred to a wider geographical area given the availability of open-source multi-year Sentienl-2 datasets and robust calibration datasets.
KW - Earth observations
KW - Forest management and monitoring
KW - Forest type classification
KW - Machine learning
KW - Phytophthora ramorum
UR - http://www.scopus.com/inward/record.url?scp=85115193735&partnerID=8YFLogxK
U2 - 10.1016/j.foreco.2021.119679
DO - 10.1016/j.foreco.2021.119679
M3 - Article
SN - 0378-1127
VL - 501
JO - Forest Ecology and Management
JF - Forest Ecology and Management
M1 - 119679
ER -