Abstract
By creating a sharp and dense dopant profile of phosphorus atoms buried within a silicon host, a two-dimensional electron gas is formed within the dopant region. Quantum confinement effects induced by reducing the thickness of the dopant layer, from 4.0nm to the single-layer limit, are explored using angle-resolved photoemission spectroscopy. The location of theoretically predicted, but experimentally hitherto unobserved, quantum well states known as the Δ manifold is revealed. Moreover, the number of carriers hosted within the Δ manifold is shown to be strongly affected by the confinement potential, opening the possibility to select carrier characteristics by tuning the dopant-layer thickness.
Original language | English |
---|---|
Article number | 121402 |
Journal | Physical Review B |
Volume | 101 |
Issue number | 12 |
DOIs | |
Publication status | Published - 15 Mar 2020 |