Abstract
Meiotic recombination shuffles genetic information from sexual species into gametes to create novel combinations in offspring. Thus, recombination is an important factor in inheritance, adaptation, and responses to selection. However, recombination is not a static parameter; meiotic recombination rate is sensitive to variation in the environment, especially temperature. That recombination rates change in response to both increases and decreases in temperature was reported in Drosophila a century ago, and since then in several other species. But it is still unclear what the underlying mechanism is, and whether low- and high-temperature effects are mechanistically equivalent. Here, we show that, as in Drosophila, both high and low temperatures increase meiotic crossovers in Arabidopsis thaliana We show that, from a nadir at 18°, both lower and higher temperatures increase recombination through additional class I (interfering) crossovers. However, the increase in crossovers at high and low temperatures appears to be mechanistically at least somewhat distinct, as they differ in their association with the DNA repair protein MLH1. We also find that, in contrast to what has been reported in barley, synaptonemal complex length is negatively correlated with temperature; thus, an increase in chromosome axis length may account for increased crossovers at low temperature in A. thaliana, but cannot explain the increased crossovers observed at high temperature. The plasticity of recombination has important implications for evolution and breeding, and also for the interpretation of observations of recombination rate variation among natural populations.
Original language | English |
---|---|
Pages (from-to) | 1409-1420 |
Number of pages | 12 |
Journal | Genetics |
Volume | 208 |
Issue number | 4 |
Early online date | 09 Feb 2018 |
DOIs | |
Publication status | Published - 01 Apr 2018 |
Externally published | Yes |
Keywords
- Adaptation, Biological/genetics
- Arabidopsis/genetics
- Crossing Over, Genetic
- Meiosis/genetics
- Models, Biological
- Recombination, Genetic
- Temperature
- Recombination
- Recombination rate
- Crossover plasticity
- Meiosis
Fingerprint
Dive into the research topics of 'Plasticity of Meiotic Recombination Rates in Response to Temperature in Arabidopsis'. Together they form a unique fingerprint.Profiles
-
Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS) - UKRI Future Leaders Fellow
Person: Research