Predicting microbial water quality with models: Over-arching questions for managing risk in agricultural catchments

David M. Oliver, Kenneth D. H. Porter, Yakov A. Pachepsky, Richard W. Muirhead, Sim M. Reaney, Rory Coffey, David Kay, David G. Milledge, Eunmi Hong, Steven G. Anthony, Trevor Page, Jack W. Bloodworth, Per-Erik Mellander, Patrice E. Carbonneau, Scott J. McGrane, Richard S Quilliam

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)
173 Downloads (Pure)

Abstract

The application of models to predict concentrations of faecal indicator organisms (FIOs) in environmental systems plays an important role for guiding decision-making associated with the management of microbial water quality. In recent years there has been an increasing demand by policy-makers for models to help inform FIO dynamics in order to prioritise efforts for environmental and human-health protection. However, given the limited evidence-base on which FIO models are built relative to other agricultural pollutants (e.g. nutrients) it is imperative that the end-user expectations of FIO models are appropriately managed. In response, this commentary highlights four over-arching questions associated with: (i) model purpose; (ii) modelling approach; (iii) data availability; and (iv) model application, that must be considered as part of good practice prior to the deployment of any modelling approach to predict FIO behaviour in catchment systems. A series of short and longer-term research priorities are proposed in response to these questions in order to promote better model deployment in the field of catchment microbial dynamics
Original languageEnglish
Pages (from-to)39-47
Number of pages9
JournalScience of the Total Environment
Volume544
DOIs
Publication statusPublished - 15 Feb 2015

Keywords

  • catchment management
  • diffuse pollution
  • faecal indicator organism
  • human health
  • pathogens

Fingerprint

Dive into the research topics of 'Predicting microbial water quality with models: Over-arching questions for managing risk in agricultural catchments'. Together they form a unique fingerprint.

Cite this