Predicting miRNA-disease associations based on multi-view information fusion

Xuping Xie, Yan Wang*, Nan Sheng, Shuangquan Zhang, Yangkun Cao, Yuan Fu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
45 Downloads (Pure)

Abstract

MicroRNAs (miRNAs) play an important role in various biological processes and their abnormal expression could lead to the occurrence of diseases. Exploring the potential relationships between miRNAs and diseases can contribute to the diagnosis and treatment of complex diseases. The increasing databases storing miRNA and disease information provide opportunities to develop computational methods for discovering unobserved disease-related miRNAs, but there are still some challenges in how to effectively learn and fuse information from multi-source data. In this study, we propose a multi-view information fusion based method for miRNA-disease association (MDA)prediction, named MVIFMDA. Firstly, multiple heterogeneous networks are constructed by combining the known MDAs and different similarities of miRNAs and diseases based on multi-source information. Secondly, the topology features of miRNAs and diseases are obtained by using the graph convolutional network to each heterogeneous network view, respectively. Moreover, we design the attention strategy at the topology representation level to adaptively fuse representations including different structural information. Meanwhile, we learn the attribute representations of miRNAs and diseases from their similarity attribute views with convolutional neural networks, respectively. Finally, the complicated associations between miRNAs and diseases are reconstructed by applying a bilinear decoder to the combined features, which combine topology and attribute representations. Experimental results on the public dataset demonstrate that our proposed model consistently outperforms baseline methods. The case studies further show the ability of the MVIFMDA model for inferring underlying associations between miRNAs and diseases.
Original languageEnglish
Article number979815
Number of pages13
JournalFrontiers in Genetics
Volume13
DOIs
Publication statusPublished - 27 Sept 2022

Keywords

  • Genetics
  • miRNA-disease associations
  • multi-view
  • deep learning
  • graph convolutional networks
  • convolutional neural networks

Fingerprint

Dive into the research topics of 'Predicting miRNA-disease associations based on multi-view information fusion'. Together they form a unique fingerprint.

Cite this