Abstract
Epigenetic aging has been found to be associated with a number of phenotypes and diseases. A few studies have investigated its effect on lung function in relatively older people. However, this effect has not been explored in the younger population. This study examines whether lung function in adolescence can be predicted with epigenetic age accelerations (AAs) using machine learning techniques. DNA methylation based AAs were estimated in 326 matched samples at two time points (at 10 years and 18 years) from the Isle of Wight Birth Cohort. Five machine learning regression models (linear, lasso, ridge, elastic net, and Bayesian ridge) were used to predict FEV1 (forced expiratory volume in one second) and FVC (forced vital capacity) at 18 years from feature selected predictor variables (based on mutual information) and AA changes between the two time points. The best models were ridge regression (R2 = 75.21% ± 7.42%; RMSE = 0.3768 ± 0.0653) and elastic net regression (R2 = 75.38% ± 6.98%; RMSE = 0.445 ± 0.069) for FEV1 and FVC, respectively. This study suggests that the application of machine learning in conjunction with tracking changes in AA over the life span can be beneficial to assess the lung health in adolescence.
Original language | English |
---|---|
Article number | 77 |
Number of pages | 9 |
Journal | Methods and Protocols |
Volume | 3 |
Issue number | 4 |
DOIs | |
Publication status | Published - 09 Nov 2020 |
Externally published | Yes |
Keywords
- Epigenetic aging
- Feature selection
- Hyperparameter tuning
- Lung function
- Machine learning