TY - JOUR
T1 - Proteolysis During Ensilage of Forages Varying in Soluble Sugar Content
AU - Davies, D. R.
AU - Merry, R. J.
AU - Williams, A. P.
AU - Bakewell, Eleanor Lydia
AU - Leemans, David
AU - Tweed, John
N1 - Funding Information:
The authors thank Myron Hobbelen for the production of the final manuscript and the analytical chemistry group for their analytical expertise. Research was funded by the Ministry of Agriculture, Fisheries and Food (London, United Kingdom) and Genus (Worcester, United Kingdom).
PY - 1998/2
Y1 - 1998/2
N2 - The effect of contrasting concentrations of water-soluble carbohydrates of herbage on silage fermentation and composition was examined using grass with high [250 g/kg of dry matter (DM)] concentrations of water-soluble carbohydrates and grass and clover with low (66 g/kg of DM) concentrations of water-soluble carbohydrates. Herbages were ensiled untreated, after inoculation with lactic acid bacteria, or after treatment with formic acid. Good quality silages were produced from herbage with high concentrations of water-soluble carbohydrates, regardless of treatment, and all pH values were below 3.7 after 90 d of ensilage. However, the silage formed from inoculated herbage had a significantly lower concentration of ammonia N and a significantly higher proportion of residual ribulose-1,5-bisphosphate carboxylase compared with the other two silages. Fast protein liquid chromatography® (Pharmacia, Uppsala, Sweden) was used to measure ribulose-1,5-bisphosphate carboxylase, and measurement of true plant protein fractions in herbage and silage showed benefits over traditional measurements such as the measurement of N and ammonia N. Herbages with low concentrations of water-soluble carbohydrates produced inferior quality silages that had lower ribulose-1,5- bisphosphate carboxylase contents and higher ammonia N contents, regardless of treatment; few significant differences were observed among treatments. Under good ensiling conditions, when available water-soluble carbohydrate is adequate, the use of inoculants can improve fermentation characteristics and increase the ribulose-1,5-bisphosphate carboxylase content of silages. However, when the herbage has low concentrations of water-soluble carbohydrates, even in inoculated herbages, lactic acid bacteria may follow a heterofermentative pathway instead of a homofermentative pathway, which can result in a decrease in silage quality and a reduction in intact ribulose-1,5-bisphosphate carboxylase.
AB - The effect of contrasting concentrations of water-soluble carbohydrates of herbage on silage fermentation and composition was examined using grass with high [250 g/kg of dry matter (DM)] concentrations of water-soluble carbohydrates and grass and clover with low (66 g/kg of DM) concentrations of water-soluble carbohydrates. Herbages were ensiled untreated, after inoculation with lactic acid bacteria, or after treatment with formic acid. Good quality silages were produced from herbage with high concentrations of water-soluble carbohydrates, regardless of treatment, and all pH values were below 3.7 after 90 d of ensilage. However, the silage formed from inoculated herbage had a significantly lower concentration of ammonia N and a significantly higher proportion of residual ribulose-1,5-bisphosphate carboxylase compared with the other two silages. Fast protein liquid chromatography® (Pharmacia, Uppsala, Sweden) was used to measure ribulose-1,5-bisphosphate carboxylase, and measurement of true plant protein fractions in herbage and silage showed benefits over traditional measurements such as the measurement of N and ammonia N. Herbages with low concentrations of water-soluble carbohydrates produced inferior quality silages that had lower ribulose-1,5- bisphosphate carboxylase contents and higher ammonia N contents, regardless of treatment; few significant differences were observed among treatments. Under good ensiling conditions, when available water-soluble carbohydrate is adequate, the use of inoculants can improve fermentation characteristics and increase the ribulose-1,5-bisphosphate carboxylase content of silages. However, when the herbage has low concentrations of water-soluble carbohydrates, even in inoculated herbages, lactic acid bacteria may follow a heterofermentative pathway instead of a homofermentative pathway, which can result in a decrease in silage quality and a reduction in intact ribulose-1,5-bisphosphate carboxylase.
KW - Proteolysis
KW - Ribulose-1,5-bisphosphate carboxylase
KW - Silage
KW - Soluble sugar
UR - http://www.scopus.com/inward/record.url?scp=0031992927&partnerID=8YFLogxK
U2 - 10.3168/jds.S0022-0302(98)75596-1
DO - 10.3168/jds.S0022-0302(98)75596-1
M3 - Article
SN - 0022-0302
VL - 81
SP - 444
EP - 453
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 2
ER -