Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy

Wei Huang, David J. Hopper, Royston Goodacre, Manfred Beckmann, Andrew Singer, John Draper

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Fourier transform-infrared (FT-IR) spectroscopy has become an important tool for rapid analysis of complex biological samples. The infrared absorbance spectrum could be regarded as a “fingerprint” which is characteristic of biochemical substances. In this study, Pseudomonas putida NCIMB 9869 was grown with either 3,5-xylenol or m-cresol as the sole carbon source, each inducing different metabolic pathways for m-cresol biotransformation. FT-IR spectroscopy was capable of differentiating both induced cultures of P. putida NCIMB 9869 as well as the resulting biotransformation product mixtures. FT-IR spectral analysis indicated that carboxylic acids were key chemicals responsible for distinguishing the products of the two catabolic pathways. Gas chromatography–mass spectrometry (GC-MS) was performed to validate the FT-IR analysis, indicating that two carboxylic acids, 3-hydroxybenzoic acid and 2,5-dihydroxybenzoic acid, were present as m-cresol biotransformation products from 3,5-xylenol-grown cells, but were absent in m-cresol-grown cells. The ability to use FT-IR to rapidly distinguish between biotransformation product mixtures as well as differentially induced bacterial strains suggests this approach might be a valuable tool for screening large biotransformation assays for novel products and metabolic mutants.
Original languageEnglish
Pages (from-to)273-280
Number of pages8
JournalJournal of Microbiological Methods
Volume67
Issue number2
DOIs
Publication statusPublished - 05 Jun 2006

Fingerprint

Dive into the research topics of 'Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy'. Together they form a unique fingerprint.

Cite this