Abstract
Wetlands are among Earth's most dynamic, diverse and varied habitats as the balance between land and water surfaces provide shelter to a unique mixture of plant and animal species. This study explores the changes in two Mediterranean wetland delta environments formed by the Axios and Aliakmonas rivers located in Greece, over a 25-year period (1984–2009). Direct photo-interpretation of four Landsat TM images acquired during the study period was performed. Furthermore, a sophisticated, semi-automatic image classification method based on support vector machines (SVMs) was developed to streamline the mapping process. Deposition and erosion magnitudes at different temporal scales during the study period were quantified using both approaches based on coastline surface area changes. Analysis using both methods was conducted in a geographical information systems (GIS) environment.
Direct photo-interpretation, which formed our reference dataset, showed noticeable changes in the coastline deltas of both study areas, with erosion occurring mostly in the earlier periods (1990–2003) in both river deltas followed by deposition in more recent years (2003–2009), but at different magnitudes. Spatial patterns of coastline changes predicted from the SVMs showed similar trends. In absolute terms SVMs predictions of sediment erosion and deposition in the studied area were different in the order of 5–20% in comparison to photo-interpretation, evidencing the potential capability of this method in coastline changes monitoring. One of the main contributions of our work lies to the use of the SVMs classifier in coastal mapping of changes, since to our knowledge use of this technique has been under-explored in this application domain. Furthermore, this study provides important contribution to the understanding of Mediterranean river delta dynamics and their behaviours, and corroborates the usefulness of EO technology and GIS as an effective tool in policy decision making and successful landscape management. The latter is of considerable scientific and practical value to the wider community of interested users, given the continued open access to observations from this satellite radiometer globally. Embargo till 16/10/2016
Direct photo-interpretation, which formed our reference dataset, showed noticeable changes in the coastline deltas of both study areas, with erosion occurring mostly in the earlier periods (1990–2003) in both river deltas followed by deposition in more recent years (2003–2009), but at different magnitudes. Spatial patterns of coastline changes predicted from the SVMs showed similar trends. In absolute terms SVMs predictions of sediment erosion and deposition in the studied area were different in the order of 5–20% in comparison to photo-interpretation, evidencing the potential capability of this method in coastline changes monitoring. One of the main contributions of our work lies to the use of the SVMs classifier in coastal mapping of changes, since to our knowledge use of this technique has been under-explored in this application domain. Furthermore, this study provides important contribution to the understanding of Mediterranean river delta dynamics and their behaviours, and corroborates the usefulness of EO technology and GIS as an effective tool in policy decision making and successful landscape management. The latter is of considerable scientific and practical value to the wider community of interested users, given the continued open access to observations from this satellite radiometer globally. Embargo till 16/10/2016
Original language | English |
---|---|
Pages (from-to) | 217-228 |
Number of pages | 12 |
Journal | International Journal of Applied Earth Observation and Geoinformation |
Volume | 35 |
Issue number | B |
Early online date | 16 Oct 2014 |
DOIs | |
Publication status | Published - Mar 2015 |
Keywords
- Remote sensing
- GIS
- Landsat TM
- Coastline mapping
- Photo-interpretation
- Support vector machines