TY - JOUR
T1 - Resistance gene deployment strategies in cereal hybrids using marker-assisted selection: Gene pyramiding, three-way hybrids, and synthetic parent populations
AU - Witcombe, J. R.
AU - Hash, C. T.
N1 - Funding Information:
This work was supported in part by a research grant from the Department for International Development Plant Sciences Research Programme (work at the University of Wales) and by unrestricted core funding from a number of donors through the Consultative Group on International Agricultural Research (work at the International Crops Research Institute for the Semi-Arid Tropics). The opinions expressed are not necessarily those of DFID or ICRISAT.
PY - 2000/3/1
Y1 - 2000/3/1
N2 - Marker-assisted selection (MAS) for resistance genes (R-genes), identified using molecular markers and quantitative trait loci (QTL) analysis, is now possible in many crops. MAS can be used to pyramid several R-genes into a single host genotype. However, this may not provide durable genetic resistance because the pathogen is exposed to a full homozygous pyramid during hybrid seed production and to a full heterozygous pyramid in the resultant hybrid. Alternative gene deployment strategies that generate genetic variability were analysed, for hybrid cereal cultivars of pearl millet, maize, sorghum and rice, using maintainer lines (B-lines) with two smaller complementary pyramids. An F1 seed parent, produced on two such B-lines, can be used to produce a three-way hybrid. All target loci are heterozygous for resistance alleles in the F1 seed parent, and the pathogen is exposed in the hybrid to a host population that is heterogeneous and heterozygous for alleles at the resistance loci targeted by MAS. Alternatively, single-cross hybrids can be made on seed parents that are maintained by two B-lines that differ for the complementary resistance gene pyramids. In a cross-pollinated crop, the B-lines are allowed to intermate to produce a synthetic B-line. In an inbreeding crop, the B-lines are equivalent to a two-component multiline variety. In inbreeding crops, because there is no intermating between the B-line components, the resultant synthetic seed parents have a higher frequency of genotypes with resistance alleles (R-alleles) at several resistance loci. However, in both cross-pollinated and inbreeding crops the genotypic structure in the hybrids is almost the same. All alternatives to a single-cross hybrid having a full pyramid produce hybrid cultivars having lower frequencies of resistance alleles. The frequency of genotypes having R-alleles at several loci increases greatly in both seed parent and hybrid when the overall frequency of R-alleles in the maintainer lines increases. This is simply done by adding a maintainer line that has a full pyramid or by the component lines having overlapping pyramids.
AB - Marker-assisted selection (MAS) for resistance genes (R-genes), identified using molecular markers and quantitative trait loci (QTL) analysis, is now possible in many crops. MAS can be used to pyramid several R-genes into a single host genotype. However, this may not provide durable genetic resistance because the pathogen is exposed to a full homozygous pyramid during hybrid seed production and to a full heterozygous pyramid in the resultant hybrid. Alternative gene deployment strategies that generate genetic variability were analysed, for hybrid cereal cultivars of pearl millet, maize, sorghum and rice, using maintainer lines (B-lines) with two smaller complementary pyramids. An F1 seed parent, produced on two such B-lines, can be used to produce a three-way hybrid. All target loci are heterozygous for resistance alleles in the F1 seed parent, and the pathogen is exposed in the hybrid to a host population that is heterogeneous and heterozygous for alleles at the resistance loci targeted by MAS. Alternatively, single-cross hybrids can be made on seed parents that are maintained by two B-lines that differ for the complementary resistance gene pyramids. In a cross-pollinated crop, the B-lines are allowed to intermate to produce a synthetic B-line. In an inbreeding crop, the B-lines are equivalent to a two-component multiline variety. In inbreeding crops, because there is no intermating between the B-line components, the resultant synthetic seed parents have a higher frequency of genotypes with resistance alleles (R-alleles) at several resistance loci. However, in both cross-pollinated and inbreeding crops the genotypic structure in the hybrids is almost the same. All alternatives to a single-cross hybrid having a full pyramid produce hybrid cultivars having lower frequencies of resistance alleles. The frequency of genotypes having R-alleles at several loci increases greatly in both seed parent and hybrid when the overall frequency of R-alleles in the maintainer lines increases. This is simply done by adding a maintainer line that has a full pyramid or by the component lines having overlapping pyramids.
KW - Durable resistance
KW - Hybrids
KW - Maize
KW - Marker-assisted selection
KW - Pearl millet
KW - Resistance gene deployment strategies
KW - Rice
KW - Sorghum
UR - http://www.scopus.com/inward/record.url?scp=0034009522&partnerID=8YFLogxK
U2 - 10.1023/A:1003836132603
DO - 10.1023/A:1003836132603
M3 - Article
SN - 0014-2336
VL - 112
SP - 175
EP - 186
JO - Euphytica
JF - Euphytica
IS - 2
ER -