Projects per year
Abstract
Amplitude-versus-angle (AVA) analysis of a seismic reflection line, imaged 13km from Russell Glacier terminus, near the western margin of the Greenland ice sheet (GrIS), suggests the presence of sediment at the bed. The analysis was complicated by the lack of identifiable multiples in the data due to a highly irregular and crevassed ice surface, rendering deeper seismic returns noisy. A modified technique for AVA processing of glacial seismic data using forward modelling with primary reflection amplitudes and simulated multiple amplitudes is presented here. Our analysis demonstrates that AVA analysis can be applied to areas with noisy seismic returns and indicates that sediment underlies the seismic study site. Our data are inconsistent with the common assumption that the GrIS is underlain only by hard bedrock, but consistent with the presence of subglacial sediment with porosity between 30% and 40%. As analysis and modelling of ice-sheet dynamics requires a sound knowledge of the underlying basal materials, subglacial sediment should be taken into account when considering ice dynamics in this region of the GrIS.
Original language | English |
---|---|
Pages (from-to) | 135-141 |
Number of pages | 17 |
Journal | Annals of Glaciology |
Volume | 54 |
Issue number | 64 |
DOIs | |
Publication status | Published - Sept 2013 |
Fingerprint
Dive into the research topics of 'Seismic evidence of mechanically weak sediments underlying Russell Glacier, West Greenland'. Together they form a unique fingerprint.Projects
- 3 Finished
-
Investigating Meltwater Flow Beneath the Greenland Ice Sheet using a Multi-tracer Approach
Hubbard, A. (PI)
Natural Environment Research Council
01 May 2011 → 30 Apr 2015
Project: Externally funded research
-
A Holistic Model of Outlet Calving, Dynamic Acceloration and Drawdown for the Greenland Ice Sheet
Hubbard, A. (PI)
Natural Environment Research Council
01 Jun 2009 → 31 May 2011
Project: Externally funded research
-
Dynamic Response of the Greenland Ice Sheet to Climate Forcing using a geophysical, Remote sensing and Numerical Modelling Framework
Hubbard, A. (PI)
Natural Environment Research Council
01 Mar 2009 → 31 Jan 2013
Project: Externally funded research