Projects per year
Abstract
The concept of a positive feedback between ice flow and enhanced melt rates in a warmer climate fuelled the debate regarding the temporal and spatial controls on seasonal ice acceleration. Here we combine melt, basal water pressure, and ice velocity data. We show using twenty years of data covering the whole ablation area that there is no strong feedback between annual ice velocities and melt rates. Annual velocities even slightly decreased with increasing melt. Results also indicate that melt variations are most important for velocity variations in the upper ablation zone up to the equilibrium line altitude. During the extreme melt in 2012 a large velocity response near the equilibrium line was observed, highlighting the possibility of rapidly changing bed conditions in this part of the ice sheet that may lead to a doubling of the annual ice velocity.
Original language | English |
---|---|
Pages (from-to) | 603-611 |
Number of pages | 9 |
Journal | Cryosphere |
Volume | 9 |
Issue number | 2 |
DOIs | |
Publication status | Published - 01 Apr 2015 |
Fingerprint
Dive into the research topics of 'Self-regulation of ice flow varies across the ablation area in South-West Greenland'. Together they form a unique fingerprint.Projects
- 3 Finished
-
Investigating Meltwater Flow Beneath the Greenland Ice Sheet using a Multi-tracer Approach
Hubbard, A.
Natural Environment Research Council
01 May 2011 → 30 Apr 2015
Project: Externally funded research
-
A Holistic Model of Outlet Calving, Dynamic Acceloration and Drawdown for the Greenland Ice Sheet
Hubbard, A.
Natural Environment Research Council
01 Jun 2009 → 31 May 2011
Project: Externally funded research
-
Dynamic Response of the Greenland Ice Sheet to Climate Forcing using a geophysical, Remote sensing and Numerical Modelling Framework
Hubbard, A.
Natural Environment Research Council
01 Mar 2009 → 31 Jan 2013
Project: Externally funded research