Solar wind-induced atmospheric erosion at Mars: First results from ASPERA-3 on Mars Express

R. Lundin*, S. Barabash, H. Andersson, M. Holmström, A. Grigoriev, M. Yamauchi, J. A. Sauvaud, A. Fedorov, E. Budnik, J. J. Thocaven, D. Winningham, R. Frahm, J. Scherrer, J. Sharber, K. Asamura, H. Hayakawa, A. Coates, D. R. Linder, C. Curtis, K. C. HsiehB. R. Sandel, M. Grande, M. Carter, D. H. Reading, H. Koskinen, E. Kallio, P. Riihela, W. Schmidt, T. Säles, J. Kozyra, N. Krupp, J. Woch, J. Luhmann, S. McKenna-Lawler, R. Cerulli-Irelli, S. Orsini, M. Maggi, A. Mura, A. Milillo, E. Roelof, D. Williams, S. Livi, P. Brandt, P. Wurz, P. Bochsler

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

193 Citations (Scopus)

Abstract

The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on board the Mars Express spacecraft found that solar wind plasma and accelerated ionospheric ions may be observed all the way down to the Mars Express pericenter of 270 kilometers above the dayside planetary surface. This is very deep in the ionosphere, implying direct exposure of the martian topside atmosphere to solar wind plasma forcing. The low-altitude penetration of solar wind plasma and the energization of ionospheric plasma may be due to solar wind irregularities or perturbations, to magnetic anomalies at Mars, or both.

Original languageEnglish
Pages (from-to)1933-1936
Number of pages4
JournalScience
Volume305
Issue number5692
DOIs
Publication statusPublished - 24 Sept 2004

Fingerprint

Dive into the research topics of 'Solar wind-induced atmospheric erosion at Mars: First results from ASPERA-3 on Mars Express'. Together they form a unique fingerprint.

Cite this