Abstract
Optical methods based on quantum cascade lasers (QCLs) are becoming popular in many life science applications. We report on two trace gas detection schemes based on continuous wave QCLs for on-line detection of nitric oxide (NO) at the sub-part-per-billion level by volume (ppbv, 1:10−9), using wavelength modulation spectroscopy (WMS) and Faraday rotation spectroscopy (FRS) at 1894 cm−1 and 1875.73 cm−1, respectively. Several technical incremental steps are discussed to further improve the sensitivity of these methods. Examples are included to demonstrate the merits of WMS-based sensor: direct monitoring of NO concentrations in exhaled breath, and from plants under pathogen attack. A simple hand-held breath sampling device that allows single breath collection at various exhalation flows (15, 50, 100 and 300 mL/s, respectively) is developed for off-line measurements and validated in combination with the WMS-based sensor. Additionally, the capability of plants to remove environmental NO is presented.
Original language | English |
---|---|
Pages (from-to) | 203-211 |
Number of pages | 9 |
Journal | Applied Physics B: Lasers and Optics |
Volume | 110 |
Issue number | 2 |
Early online date | 24 May 2012 |
Publication status | Published - 01 Feb 2013 |