Stability of a helicoidal surface inside a cylinder with pinned diameters

Robert J. Whittaker*, Simon Cox

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (SciVal)
115 Downloads (Pure)


A mathematical analysis is presented of the stability of a soap film with uniform surface tension when stretched between two diameters on the inside of a circular cylinder. The stability boundary is found as a critical twist angle. between the two diameters, as a function of the aspect ratio l of the cylinder. Numerical and asymptotic results agree well with previous numerical simulations and experiments by Cox and Jones (J. Engr. Math., 86 (2014), 1-7). Their hypothesis that the stability boundary for the multiple-vane case is identical to the single film case is confirmed. It is also shown that two distinct instability mechanisms operate. For moderate and small theta/l, the instability is driven by the decrease in area caused by the film moving to an off-diameter position. But for larger theta/l (more twisted films), the decrease in area is dominated by an internal rearrangement of the surface. The latter mechanism is more relevant to Plateau borders in foams, and our results indicate that straight Plateau borders should be stable at any length provided the total twist is less than pi/root 2.  Document embargo until 29/01/2016

Original languageEnglish
Pages (from-to)23-52
Number of pages30
JournalQuarterly Journal of Mechanics and Applied Mathematics
Issue number1
Early online date29 Jan 2015
Publication statusPublished - Feb 2015


Dive into the research topics of 'Stability of a helicoidal surface inside a cylinder with pinned diameters'. Together they form a unique fingerprint.

Cite this