TY - JOUR
T1 - The Influence of Recovery Duration after Heavy Resistance Exercise on Sprint Cycling Performance
AU - Thatcher, Rhys
AU - Gifford, Rhys
AU - Howatson, Glyn
PY - 2012/11
Y1 - 2012/11
N2 - The influence of recovery duration after heavy resistance exercise on sprint cycling performance. J Strength Cond Res 26(11): 3089–3094, 2012—The aim of this study was to determine the optimal recovery duration after prior heavy resistance exercise (PHRE) when performing sprint cycling. On 5 occasions, separated by a minimum of 48 hours, 10 healthy male subjects (mean ± SD), age 25.5 ± 7.7 years, body mass 82.1 ± 9.0 kg, stature 182.6 ± 87 cm, deadlift 1-repetition maximum (1RM) 142 ± 19 kg performed a 30-second sprint cycling test. Each trial had either a 5-, 10-, 20-, or 30-minute recovery after a heavy resistance activity (5 deadlift repetitions at 85% 1RM) or a control trial with no PHRE in random order. Sprint cycling performance was assessed by peak power (PP), fatigue index, and mean power output over the first 5 seconds (MPO5), 10 seconds (MPO10), and 30 seconds (MPO30). One-way analysis of variance with repeated measures followed by paired t-tests with a Bonferroni adjustment was used to analyze data. Peak power, MPO5, and MPO10 were all significantly different during the 10-minute recovery trial to that of the control condition with values of 109, 112, and 109% of control, respectively; no difference was found for the MPO30 between trials. This study supports the use of PHRE as a strategy to improve short duration, up to, or around 10-second, sprint activity but not longer duration sprints, and a 10-minute recovery appears to be optimal to maximize performance.
AB - The influence of recovery duration after heavy resistance exercise on sprint cycling performance. J Strength Cond Res 26(11): 3089–3094, 2012—The aim of this study was to determine the optimal recovery duration after prior heavy resistance exercise (PHRE) when performing sprint cycling. On 5 occasions, separated by a minimum of 48 hours, 10 healthy male subjects (mean ± SD), age 25.5 ± 7.7 years, body mass 82.1 ± 9.0 kg, stature 182.6 ± 87 cm, deadlift 1-repetition maximum (1RM) 142 ± 19 kg performed a 30-second sprint cycling test. Each trial had either a 5-, 10-, 20-, or 30-minute recovery after a heavy resistance activity (5 deadlift repetitions at 85% 1RM) or a control trial with no PHRE in random order. Sprint cycling performance was assessed by peak power (PP), fatigue index, and mean power output over the first 5 seconds (MPO5), 10 seconds (MPO10), and 30 seconds (MPO30). One-way analysis of variance with repeated measures followed by paired t-tests with a Bonferroni adjustment was used to analyze data. Peak power, MPO5, and MPO10 were all significantly different during the 10-minute recovery trial to that of the control condition with values of 109, 112, and 109% of control, respectively; no difference was found for the MPO30 between trials. This study supports the use of PHRE as a strategy to improve short duration, up to, or around 10-second, sprint activity but not longer duration sprints, and a 10-minute recovery appears to be optimal to maximize performance.
UR - http://hdl.handle.net/2160/10912
U2 - 10.1519/JSC.0b013e318245beea
DO - 10.1519/JSC.0b013e318245beea
M3 - Article
C2 - 22190162
SN - 1064-8011
VL - 26
SP - 3089
EP - 3094
JO - Journal of Strength and Conditioning Research
JF - Journal of Strength and Conditioning Research
IS - 11
ER -