The Kelch-F-box protein SMALL AND GLOSSY LEAVES 1 (SAGL1) negatively influences salicylic acid biosynthesis in Arabidopsis thaliana by promoting the turn-over of transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1)

K Yu, WQ Yang, B Zhao, Ling Wang, Pan Zhang, Y Ouyang, YK Chang, GZ Chen, JL Zhang, Shujie Wang, Xiao Wang, PP Wang, Wei Wang, JA Roberts, K Jiang, LAJ Mur, XB Zhang

Research output: Contribution to journalArticlepeer-review

7 Citations (SciVal)
12 Downloads (Pure)

Abstract

Salicylic acid (SA) is a key phytohormone regulating plant immunity. Although the transcriptional regulation of SA biosynthesis has been well-studied, its post-translational regulation is largely unknown.

We report that a Kelch repeats-containing F-box (KFB) protein, SMALL AND GLOSSY LEAVES 1 (SAGL1), negatively influences SA biosynthesis in Arabidopsis thaliana by mediating the proteolytic turnover of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1), a master transcription factor that directly drives SA biosynthesis during immunity.

Loss of SAGL1 resulted in characteristic growth inhibition. Combining metabolomic, transcriptional and phenotypic analyses, we found that SAGL1 represses SA biosynthesis and SA-mediated immune activation. Genetic crosses to mutants that are deficient in SA biosynthesis blocked the SA overaccumulation in sagl1 and rescued its growth. Biochemical and proteomic analysis identified that SAGL1 interacts with SARD1 and promotes the degradation of SARD1 in a proteasome-dependent manner.

These results unravelled a critical role of KFB protein SAGL1 in maintaining SA homeostasis via controlling SARD1 stability.
Original languageEnglish
Pages (from-to)885-897
Number of pages13
JournalNew Phytologist
Volume235
Issue number3
Early online date28 May 2022
DOIs
Publication statusPublished - 30 Jun 2022

Keywords

  • Arabidopsis thaliana
  • F-box protein
  • growth-immunity trade-off
  • phenylpropanoid metabolism
  • salicylic acid (SA)
  • SARD1
  • PIPECOLIC ACID
  • ISOCHORISMATE SYNTHASE
  • PARTIALLY REDUNDANT
  • DISEASE RESISTANCE
  • AMINO-ACID
  • FAMILY
  • ROLES
  • TEMPERATURE
  • TOLERANCE
  • REGULATOR

Fingerprint

Dive into the research topics of 'The Kelch-F-box protein SMALL AND GLOSSY LEAVES 1 (SAGL1) negatively influences salicylic acid biosynthesis in Arabidopsis thaliana by promoting the turn-over of transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1)'. Together they form a unique fingerprint.

Cite this