Projects per year
Abstract
Measurements of ice temperature provide crucial constraints on ice viscosity and the thermodynamic processes occurring within a glacier. However, such measurements are presently limited by a small number of relatively coarse-spatial-resolution borehole records, especially for ice sheets. Here, we advance our understanding of glacier thermodynamics with an exceptionally high-vertical-resolution (∼0.65 m), distributed-fiber-optic temperature-sensing profile from a 1043-m borehole drilled to the base of Sermeq Kujalleq (Store Glacier), Greenland. We report substantial but isolated strain heating within interglacial-phase ice at 208 to 242 m depth together with strongly heterogeneous ice deformation in glacial-phase ice below 889 m. We also observe a high-strain interface between glacial- and interglacial-phase ice and a 73-m-thick temperate basal layer, interpreted as locally formed and important for the glacier's fast motion. These findings demonstrate notable spatial heterogeneity, both vertically and at the catchment scale, in the conditions facilitating the fast motion of marine-terminating glaciers in Greenland.
Original language | English |
---|---|
Article number | eabe7136 |
Number of pages | 11 |
Journal | Science Advances |
Volume | 7 |
Issue number | 20 |
DOIs | |
Publication status | Published - 14 May 2021 |
Fingerprint
Dive into the research topics of 'Thermodynamics of a fast-moving Greenlandic outlet glacier revealed by fiber-optic distributed temperature sensing'. Together they form a unique fingerprint.Datasets
-
Distributed temperature sensing data from a borehole drilled to the base of Sermeq Kujalleq (Store Glacier), Greenland, in July 2019
Law, R., Christoffersen, P., Hubbard, B. & Doyle, S., Prifysgol Aberystwyth | Aberystwyth University, 25 Mar 2021
DOI: 10.17863/CAM.65812
Dataset
File
Projects
- 1 Finished
-
RESPONDER: Resolving subglacial properties, hydrological networks and dynamic evolution of ice flow on the Greenland Ice Sheet (RESPONDER)
Christoffersen, P. & Hubbard, B.
01 Oct 2016 → 30 Sept 2022
Project: Externally funded research