Thickness-dependent electronic structure modulation of ferromagnetic films on shape memory alloy substrates based on a pure strain effect

Chun Feng, Di Hu, Kui Gong, Xumin Jiang, Jianjuan Yin, Yi Cao, Xiao-Lei Tang, Feng Yang, Zhongfu Zhou, Guanghua Yu, David Evans

Research output: Contribution to journalArticlepeer-review

5 Citations (SciVal)
230 Downloads (Pure)

Abstract

Pure strain-induced electronic structure modulation in ferromagnetic films is critical for developing reliable strain-assisted spintronic devices with low power consumption. For the conventional electricity-controlled strain engineering, it is difficult to reveal the pure strain effect on electronic structure tunability due to the inseparability of pure strain effect and surface charge effect. Here, a non-electrically controlled NiTi shape memory alloy was utilized as a strain output substrate to induce a pure strain on attached Fe films through a thermally controlled shape memory effect. The pure strain induced electronic structure evolution was revealed by in-situ X-ray photoelectron spectroscopy and correlated with first-principles calculations and magnetic anisotropy measurements. A compressive strain enhances the shielding effect for core electrons and significantly tunes their binding energy. Meanwhile, the strain modifies the partial density of states of outer d orbits, which may affect spin-orbit coupling strength and related magnetic anisotropy. This work helps for clarifying the physical nature of the pure strain effect and developing the pure-strain-assisted spintronic devices
Original languageEnglish
Article number212401
JournalApplied Physics Letters
Volume109
Issue number21
Early online date21 Nov 2016
DOIs
Publication statusPublished - 22 Nov 2016

Fingerprint

Dive into the research topics of 'Thickness-dependent electronic structure modulation of ferromagnetic films on shape memory alloy substrates based on a pure strain effect'. Together they form a unique fingerprint.

Cite this