Projects per year
Abstract
In commercially grown Miscanthus × giganteus, despite imposing a yield penalty, postwinter harvests improve quality criteria for thermal conversion and crop sustainability through remobilization of nutrients to the underground rhizome. We examined 16 Miscanthus genotypes with different flowering and senescence times for variation in N, P, K, moisture, ash, Cl and Si contents, hypothesizing that early flowering and senescence could result in improved biomass quality and/or enable an earlier harvest of biomass (in autumn at peak yield). Ideal crop characteristics at harvest are low N and P to reduce future fertilizer inputs, low K and Cl to reduce corrosion in boilers, low moisture to reduce spoilage and transportation costs, and low Si and ash to reduce slagging and consequent operational downtime. Stems and leaves were harvested during summer, autumn and then the following spring after overwinter ripening. In spring, stem contents of N were 30–60 mg kg −1, P were 203–1132 mg kg −1, K were 290–4098 mg kg −1, Cl were 10–23 mg kg −1 and moisture were 12–38%. Notably, late senescence resulted in increased N, P, K, Cl, moisture and ash contents, and should therefore be avoided for thermochemical conversion. Flowering and senescence led to overall improved combustion quality, where flowered genotypes tended towards lower P, K, Cl and moisture contents; marginally less, or similar, N, Si and ash contents; and a similar higher heating value, compared to those that had not flowered. Such genotypes could potentially be harvested in the autumn. However, one genotype that did not flower in our trial exhibited sufficiently low N and K content in autumn to meet the ENplus wood pellet standards for those traits, and some of the lowest P, moisture and ash contents in our trial, and is thus a target for future research and breeding.
Original language | English |
---|---|
Pages (from-to) | 891-908 |
Number of pages | 18 |
Journal | GCB Bioenergy |
Volume | 9 |
Issue number | 5 |
Early online date | 30 Sept 2016 |
DOIs | |
Publication status | Published - 01 May 2017 |
Keywords
- SUSTAINABILITY
- nutrient remobilisation
- BIOENERGY
- biomass combustion
- Chemical composition
- nutrient remobilization
- bioenergy
- chemical composition
- sustainability
Fingerprint
Dive into the research topics of 'Towards Miscanthus combustion quality improvement: the role of flowering and senescence'. Together they form a unique fingerprint.Profiles
Projects
- 7 Finished
-
BBSRC Core Strategic Programme in Resilient Crops: Miscanthus
Donnison, I. (PI)
Biotechnology and Biological Sciences Research Council
01 Apr 2017 → 31 Mar 2020
Project: Externally funded research
-
Optimising and sustaining biomass yield
Donnison, I. (PI), Farrar, K. (PI) & Slavov, G. (PI)
01 Apr 2012 → 31 Mar 2017
Project: Externally funded research
-
Matching cell-wall composition with conversion processes
Donnison, I. (PI), Allison, G. (PI), Bosch, M. (PI) & Shah, I. P. (CoI)
01 Apr 2012 → 31 Mar 2017
Project: Externally funded research
-
Optimising energy output and biorefining
Donnison, I. (PI), Gallagher, J. (PI), Shah, I. P. (PI) & Winters, A. (PI)
Biotechnology and Biological Sciences Research Council
01 Apr 2012 → 31 Mar 2017
Project: Externally funded research
-
Genetic resources for the dissection of bioenergy traits
Donnison, I. (PI) & Clifton-Brown, J. (PI)
01 Apr 2012 → 31 Mar 2017
Project: Externally funded research
-
Molecular Genetics of Miscanthus
Donnison, I. (PI) & Clifton-Brown, J. (PI)
Biotechnology and Biological Sciences Research Council
01 Apr 2008 → 31 Mar 2012
Project: Externally funded research
-
Optimising the development of the energy grass Miscanthus through manipulation of flowering time
Donnison, I. (PI)
Biotechnology and Biological Sciences Research Council
24 Sept 2007 → 23 Sept 2011
Project: Externally funded research
Equipment
-
Nitrogen analyser [FP-428]
Darby, R. (Manager)
Institute of Biological, Environmental & Rural Sciences (IBERS)Facility/equipment: Equipment