Unique genetic variation at a species' rear edge is under threat from global climate change

Jim Provan*, Christine A. Maggs

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

115 Citations (SciVal)


Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two single-copy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.

Original languageEnglish
Pages (from-to)39-47
Number of pages9
JournalProceedings of the Royal Society B: Biological Sciences
Issue number1726
Publication statusPublished - 07 Jan 2012


  • Chondrus crispus
  • distribution range
  • glacial refugia
  • phylogeography
  • population genetics


Dive into the research topics of 'Unique genetic variation at a species' rear edge is under threat from global climate change'. Together they form a unique fingerprint.

Cite this